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Abstract— Eigenbeamforming, herein referred to as maximal-
ratio eigen-combining (MREC), was recently proposed as an
alternative to maximum average signal-to-noise ratio beamform-
ing (Max-ASNR BF) and maximal-ratio combining (MRC) in
antenna array systems. An analysis of MREC is undertaken and
an average error probability (AEP) expression is obtained for
BPSK modulation and Rayleigh fading when the channel gains
may be imperfectly-known and partially correlated. The analysis
is further specialized to pilot-symbol-aided channel estimation,
to allow an analytical performance assessment of smart antenna
arrays (SAAs) employing MREC in realistic scenarios with
angle-of-arrival (AOA) dispersion. Numerical results show that
MREC may significantly outperform Max-ASNR BF and MRC
in imperfect conditions.

I. INTRODUCTION

Antenna arrays can increase range and user capacity in mo-
bile wireless communication systems by combating multipath
fading, interference and noise. To this end, signal processing
performed by smart antenna arrays (SAAs) should account
for the correlations between the channel gains, which are
determined by the inter-element distance and by the angle-of-
arrival (AOA) distribution type and parameters [1]. Conven-
tional signal processing methods applied at receiving antenna
arrays include: (1) maximum average signal-to-noise ratio
beamforming (Max-ASNR BF) [2], for highly-correlated sig-
nals; (2) maximum instantaneous signal-to-noise ratio or
maximal-ratio combining (MRC) [3], for highly-decorrelated
signals. The symbol-detection performance degrades for both
Max-ASNR BF [4] and MRC [3] for partially-correlated
channel gains. Eigenbeamforming [5], which we refer to as
maximal-ratio eigen-combining (MREC) [6] [7], incorporates
the principles of Max-ASNR BF and MRC, by using long-
and short-term (relative to the fading rate) channel features, to
provide both antenna and diversity gains.

In principle, MREC employs the Karhunen-Loève Trans-
form (KLT) [8] to obtain a minimum-loss lower-dimensional
approximation of the received signal vector, followed by MRC,
to take advantage of the effective diversity order with min-
imum complexity. Previously, MREC for imperfect channel
knowledge was investigated only for approximate “maximal-
ratio combining” where estimates of the transformed channel

gains are used as actual weights [4] [6] [7] [9]. Approxi-
mate MREC was found to benefit SAAs in scenarios with
significantly-correlated channel gains: (1) it yields diversity
gain and reduces the average error probability (AEP) compared
to the less complex Max-ASNR BF [4] [6] [7], (2) it reduces
the short-term processing volume and improves the estimation
precision compared to MRC [5] [6] [7] [9], and (3) it can be
adapted to the actual environment scattering characteristics,
unlike Max-ASNR BF and MRC [7].

In this work we investigate MREC for imperfect channel
knowledge when the second step in MREC consists of exact
maximal-ratio combining, as described in [10]. Exact MREC is
optimal, easier to analyze than approximate MREC [6] and can
provide a natural criterion for adaptive MREC order selection
[7]. In Section II, partial correlation between channel gains,
induced by moderate AOA dispersion at antenna arrays, is
shown to lead to MREC by integrating concepts from Max-
ASNR BF and MRC. Section III contains an AEP-analysis
of exact MREC for BPSK transmission and imperfectly-
estimated Rayleigh fading channel, which is further special-
ized to the case of estimation based on pilot-symbol-aided
modulation [11] (PSAM). Numerical results obtained from
analysis and simulations show in Section IV that MREC may
significantly outperform Max-ASNR BF and MRC.

II. SIGNAL PROCESSING FOR SAAS

Consider a base station with an N -element antenna array
receiving a BPSK-modulated signal transmitted by a sin-
gle mobile station, after propagation through a frequency-
flat Rayleigh fading channel. After demodulation, matched-
filtering and sampling, the complex-valued received signal
vector can be written as:

y =
√

Eb bh + n (1)

where Eb is the energy transmitted per symbol and b ∈
{±1} is an equiprobable binary random variable. Assume
that the (column) channel vector h = [h1 h2 . . . hN ]T is the
superposition of P temporally-unresolvable multipaths [1] [4]
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[5] as in

h =
1√
P

P∑
p=1

gp a(θc + θp), (2)

where gp, θp and a(θc+θp) are, respectively, the random zero-
mean complex channel gain, the random deviation from the
mean AOA θc, and the array propagation vector [2] for the
pth multipath. For large P , the components of the channel

vector, hi, i = 1, N
�
= 1, 2, . . . , N , denoted as channel

gains and also as branches herein, are zero-mean Gaussian
random variables [1]. In this section we assume the channel
vector to be perfectly-known, unless specified otherwise. The
noise vector n is assumed zero-mean, spatially-white complex
Gaussian, n ∼ N (0, N0IN ). Furthermore, we assume that the
transmitted symbols, channel gains and noise are statistically
independent.

Since the channel vector correlation matrix Rh
�
= E{hhH}

obtained by averaging over fading is Hermitian, it has real and
non-negative eigenvalues, λ1 ≥ λ2 ≥ . . . ≥ λN ≥ 0, and a
complete set of orthonormal eigenvectors, el, l = 1, N . If

we define ΛΛΛ
�
= diag{λ1, λ2, . . . , λN} and the unitary matrix

E
�
= [e1 e2 . . . eN ] then

Rh = EΛΛΛEH =
N∑

l=1

λl el eHl . (3)

Throughout this work, we assume perfect knowledge of the
eigen-structure of Rh since it can be accurately estimated in
practice [5].

Rh and its eigen-structure reflect geometrical features of
the antenna array as well as scattering [1]. For illustration
purposes we will consider the following example setting: a
5-element uniform linear array (ULA) with half-wavelength
spacing between adjacent elements; unitary channel gain vari-
ance, E{|hl|2} = 1, l = 1, N ; uniformly-distributed AOA,
θ = θc + θp (measured with respect to broadside), i.e. [1]

p(θ) =
{

1
2 ∆ , if θ ∈ [θc − ∆, θc + ∆]

0 , otherwise,
(4)

where ∆ is the maximum AOA dispersion; θc = 0. Then,
Rh can be computed using [1, Eqns. (A-19) and (A-20)]. For
this setting, Fig. 1 depicts the dependence between ∆, the
correlation between two adjacent channel vector components
ρ, and the eigenvalues of Rh, λl, l = 1, N .

The following hold in general and are reflected in Fig. 1.
Fact 1: the elements of h are coherent (fully correlated)

with h = h̃1 · e1 (clearly, h̃1 = eH1 h) if and only if (iff) 1

λ1 = tr(Rh) and λ2 = λ3 = . . . = λN = 0.

Fact 2: the elements of h are uncorrelated, i.e., (Rh)l1,l2
�
=

E{hl1 h∗
l2
} = 0, ∀l1, l2 = 1, N, l1 �= l2, with equal variances

(Rh)l,l
�
= E{|hl|2} = λ, l = 1, N , iff the eigenvalues of Rh

are all equal, i.e., λl = λ, l = 1, N .

1tr(Rh)
�
=

∑N
l=1(Rh)l,l =

∑N
l=1 λl is a measure of the total intended-

signal energy received at the antenna array.
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Fig. 1. Eigenvalues of Rh and fading correlation at two adjacent antenna
elements vs. the maximum AOA dispersion.

For ∆ = 0, Fig. 1 suggests that Rh is rank-one. This can be
proven analytically using first the channel model in (2) to show
that the branches are coherent, and then Fact 1. The maximum-
likelihood (ML) symbol detector in this case is given by

b̂BF = sign
[�(wH

BF y)
]
, wBF = h = h̃1 e1, h̃1 = eH1 h (5)

where �(·) stands for the real part of a complex number. Since
wBF is proportional to the dominant eigenvector e1 of Rh,
it maximizes wHRhw

wHw
, i.e., it yields maximum average SNR

beamforming [2] (Max-ASNR BF). Max-ASNR BF has low
complexity and also enhances the estimation precision for h̃1

as a result of array gain [5].
Note that wBF = h̃1 e1 always yields maximum average

output SNR, even for nonzero AOA dispersion, i.e., when
h is actually a linear combination of several eigenvectors
of Rh — see Fig. 1. However, the Max-ASNR BF detector
from (5) is then no longer ML, i.e., wBF = h̃1 e1 �= h, and
its performance is expected to degrade with increasing AOA
dispersion [4].

Obviously, wML = h is the ML combiner regardless of the
AOA dispersion, i.e., branch correlation. It also maximizes
the instantaneous output SNR [3] yielding MRC. Notice that,
unlike Max-ASNR BF, MRC yields diversity gain, but requires
knowledge of all elements of h, which for an antenna with
many elements means considerable processing for short-term
channel estimation. Furthermore, not enough training symbols
may lead to poor estimation accuracy which may significantly
degrade MRC detection performance [5] [6] [7] [9]. Finally,
MRC is known to offer minimum AEP only when the channel
gains are uncorrelated [3] (situation described by Fact 2).

Fig. 1 shows that when the correlation between adja-
cent components of h is high (ρ > 0.8 [1]) only a few
eigenvalues are significant, i.e., most of the intended-signal
energy is confined to a subspace of fairly-low dimension.
This observation lead to the maximal-ratio eigen-combining
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(MREC) [5] approach in which a combiner is formed only with
dominant eigenvectors of Rh in order to reduce the short-term
processing complexity compared with MRC and to exploit the
available diversity gain, unlike Max-ASNR BF.

The first step in MREC is to apply the KLT [8] matrix EH
L

�
=

[e1 e2 . . . eL]H, for an appropriately-chosen L = 1, N
[7], to both sides of (1) to obtain

ỹL =
√

Eb b h̃L + ñL, (6)

where ỹL
�
= EH

L y, h̃L
�
= EH

L h, ñL
�
= EH

L n. The KLT is
the optimum least-squares decorrelating transform [8], i.e.,
among all the possible transforms, it concentrates the largest
amount of energy from the original channel vector h into h̃L =[
h̃1 . . . h̃L

]T
, with h̃l = eHl h, l = 1, L. The components

of h̃L, further denoted as eigenbranches [5], are zero-mean
Gaussian random variables with

E{h̃l1 · h̃∗
l2} =

{
λl1 , if l1 = l2

0 , otherwise,
(7)

∀ l1, l2 = 1, L, so that they are independent.
The second step in MREC is maximal-ratio combining of

the L components of the transformed signal vector ỹL. The
symbol detector for MREC of order L is:

b̂
(N,L)
MREC = sign

[
�

([
w̃(N,L)

MREC

]H
ỹL

)]
, with w̃(N,L)

MREC = h̃L.

Thus, MREC is devised to employ both the eigen-structure
of the long-term correlation matrix of the channel vector as
well as the corresponding short-term eigenbranches. Let us
indicate the relationships between MREC, Max-ASNR BF and
MRC, for perfect channel knowledge: (1) MREC with L = 1
actually represents Max-ASNR BF, because then the above
MREC detector coincides with the Max-ASNR BF detector
from (5); (2) MREC with L = N (denoted further as full
MREC) is equivalent to MRC because then the above MREC
detector coincides with the MRC detector — see also [12].

III. ANALYSIS OF EXACT MREC FOR ESTIMATED

CHANNEL

Since MREC consists of maximal-ratio combining for in-
dependent eigenbranches, we apply previous results on MRC
for independent channel gains to analyze MREC. It can be
shown [10] that if h̃l and its estimate g̃l are jointly Gaussian
the eigenbranch instantaneous SNR conditioned on g̃l is

γ̃l
�
=

Eb

N0
σ2

h̃l
|µ̃l|2

Eb

N0
σ2

h̃l
(1 − |µ̃l|2) + 1

· |g̃l|2
E{|g̃l|2} , (8)

where

µ̃l
�
=

σ2
h̃l,g̃l√

σ2
h̃l

σ2
g̃l

. (9)

is the correlation coefficient of the actual eigenbranch and its

estimate, with σ2
h̃l,g̃l

�
= E{h̃l g̃

∗
l }, σ2

h̃l

�
= E{|h̃l|2} = λl and

σ2
g̃l

�
= E{|g̃l|2}. Then [10] γ̃l is exponentially distributed with

mean E{γ̃l} = Γ̃l given by

Γ̃l
�
=

Eb

N0
λl|µ̃l|2

Eb

N0
λl (1 − |µ̃l|2) + 1

. (10)

Notice that µ̃l = 1 when the lth eigenbranch is assumed
perfectly-known and thus Γ̃l = Eb

N0
λl.

Most previous work related to MRC for imperfect channel
knowledge employed the branch estimates as actual weights
for the received signals. While it simplifies implementation,
this approach is actually suboptimal (approximate) for channel
gains with unequal variances (unbalanced). Then, the weights
for approximate MREC [6] [7] [9] are[

w̃(N,L)
approx. MREC

]
l
= g̃l, l = 1, L. (11)

Denote as γ̃ the total instantaneous output-SNR conditioned
on the eigenbranch estimates for a combiner with L ≤ N
eigenbranches. Based on results from [10] for exact MRC
given the estimated channel gains, the weights for exact MREC
given the eigen-branch estimates, i.e., for maximizing γ̃, can
be shown to be

[
w̃(N,L)

exact MREC

]
l
=

√
Eb

N0
λl µ̃l

Eb

N0
λl (1 − |µ̃l|2) + 1

g̃l

σg̃l

, l = 1, L, (12)

yielding

γ̃
�
=

L∑
l=1

γ̃l. (13)

Since in practice each eigenbranch estimate g̃l would be
computed by sampling ỹl, then γ̃l, l = 1, L are mutually
independent, and the AEP for exact MREC with N branches
and L eigenbranches can be shown to be

P (N,L)
e =

1
π

∫ π/2

0

L∏
l=1

sin2 φ

sin2 φ + Γ̃l

dφ, (14)

by employing the p.d.f. of γ̃ to average the instantaneous error
probability over the fading as in [3, Section 9.2.3.1] [7]. This
AEP expression was used in [7] to devise a natural criterion for
adaptive order selection in MREC, which trades-off detection
performance and processing complexity.

For perfect channel knowledge we know that MREC with
L = 1 is equivalent to Max-SNR BF, and that full MREC
(L = N ) is equivalent to MRC. Then, using (14) and the Facts
from Section II it can be shown that balanced uncorrelated
branches minimize the AEP for MRC, while coherent branches
maximize it. The opposite can be shown for Max-ASNR BF.

The AEP-expression from (14) can be specialized for
PSAM-based estimation [11], in which the receiver interpo-
lates the signal samples acquired during the intervals corre-
sponding to the pilot symbols. The notation (k,m) is used for
temporal indexing: k = −K1,K2 is the slot index; k = 0 for
the slot in which estimation takes place; K = K1 + K2 + 1
frames are used for interpolation; M = slot length; m =
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0,M − 1 is the symbol index in a slot, m = 0 for the pilot
symbol. For MREC, the lth eigenbranch at the mth data-
symbol position in the slot can be estimated as

g̃l (0,m) = ṽH
l (m) r̃l, (15)

where ṽl(m) is the PSAM interpolation filter, r̃l
�
=

1√
Eb·bp

[ỹl (−K1, 0) . . . ỹl (K2, 0)]T , bp is the pilot symbol

and ỹl (k, 0) = eHl y (k, 0).
We consider two types of interpolation filters: (1) the Wiener

filter, which is MMSE optimum in the presence of noise and
depends on the second-order statistics of the received signals
[11] and (2) the filter with SINC-type impulse response, which
is optimum in the absence of noise and independent of the
received signals, tapered by a raised-cosine [13]. Denote the
corresponding estimation methods as MMSE PSAM and SINC
PSAM. The coefficients of the above interpolation filters and
the correlations required to compute µ̃l, l = 1, L from (9),
which enter the AEP-formula (14) through Γ̃l from (10), were
determined and are shown in Tables I – III from [6] [7]. Note
that the estimate from (15), and thus the AEP, depends on the
position of the detected symbol in the slot, m.

Remarks: It can be shown that λl ≈ 0 leads to g̃l ≈ 0
for MMSE PSAM, but not for SINC PSAM, and that the
factor multiplying g̃l in (12) is nearly-zero for SINC PSAM,
but not for MMSE PSAM. Therefore, for exact MREC the
detection performance does not degrade when adding a new
eigenbranch, a fact also indicated by (14). On the other hand,
eigenbranches corresponding to very small eigenvalues in
approximate MREC may degrade the detection performance
for SINC PSAM, but not for MMSE PSAM [6] [7].

IV. NUMERICAL RESULTS

For the example setting described in Section II and exact
combining for normalized maximum Doppler frequency fn =
0.05, symbol SNR Eb/N0 = 5 dB and MMSE PSAM with
M = 7 and K = 11 [7] [11], Fig. 2 shows: with dashed
lines — the AEP for MREC, i.e., P

(N,L)
e (∆) from (14) for

L = 1, N ; with thick solid line — the AEP for MRC, from
an expression obtained as indicated in [7]; with dotted solid
line — the AEP for MREC with order L selected using the
performance/complexity trading-off method proposed in [7].
These curves were obtained by averaging the AEPs over a
slot, i.e., for m = 1,M − 1. In [7] we plotted the AEP
from (14) for both MMSE and SINC PSAM for Laplacian
AOA distribution.

To understand Fig. 2, recall from Section II that as the
AOA dispersion increases the correlation between the branches
decreases and the intended-signal energy is distributed into a
larger-dimensional subspace (see Fig. 1). Given L > 1, MREC
yields diversity gain and therefore its AEP-performance im-
proves when ∆ increases from 0, until the actual dimension
of the signal subspace increases beyond L, leading to AEP
degradation. Given ∆, L-order MREC performs as well as
full MREC only if L is large enough. As expected, exact full
MREC offers minimum AEP throughout the AOA-dispersion
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Fig. 2. Dashed lines — AEP for exact MREC, P
(N,L)
e , N = 5, L = 1, N ,

calculated with (14), vs. the maximum AOA dispersion, when MMSE PSAM
is used for estimation. Thick solid line — the AEP for exact MRC obtained as
in [7]. Dotted solid line — AEP obtained when the order L for exact MREC
is selected with the criterion proposed in [7].

range. On the other hand, since (14) with L = 1 expresses
the AEP for Max-ASNR BF, Fig. 2 indicates that MREC with
L ≥ 2 may significantly outperform Max-ASNR BF for AOA
dispersion larger than a few degrees.

Notice also that for exact combining, for each L ≤ N ,
MREC has lower BER than MRC up to some value of ∆, and
full MREC appears at least as effective as MRC regardless
of ∆, i.e., of branch correlation. The explanation is that, for
significantly-correlated channel gains, a few eigenbranches
have higher average SNR and therefore are estimated more
accurately compared to the branches [5]. Furthermore, com-
pared to MRC, MREC may significantly reduce processing
since updating the eigen-structure estimate does not increase
complexity significantly as it occurs infrequently relative to
the rate at which the eigenbranch estimates are updated [5].

Using (14) and results from [6] [7] we can also plot
the AEPs vs. the symbol SNR, Eb/N0. (Such plots are not
provided here because of space limitations, but they resemble
the corresponding ones shown in [7] for Laplacian AOA
distribution.) For the same example setting, at AEP = 10−2

and ∆ = 10◦, we found exact MREC of order L = 2 to
be about 5 dB better than Max-ASNR BF and about 1 dB
better than exact MRC, for both MMSE and SINC PSAM. We
noticed that the performance gap between MREC of a given
order L > 1 and Max-ASNR BF/MRC increases/decreases
with Eb/N0, which can be explained easily using diversity
order/gain considerations, as in [7].

Next, we present Monte Carlo simulation results for exact
MREC, Max-ASNR BF and MRC. Fig. 3 shows the bit-error-
rate (BER) for exact MREC and MRC when PSAM with the
MMSE and SINC interpolation filters are used for estimation.
For the same antenna geometry and system parameters as for
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Fig. 3. BER vs. the maximum AOA dispersion, obtained by simulation for
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Figs. 1 and 2 we generated the channel model in (2) for about
105 bits at each value of ∆. The BER-curves for MREC with
MMSE PSAM agree with the AEP-curves obtained with (14)
and shown in Fig. 2, confirming our analysis. Fig. 3 also
shows, with dots, the BER obtained for exact MREC with
order selected using the method in [7]: clearly, the signal
processing requirements in MREC can be efficiently adapted
to the actual environment by choosing the lowest number of
eigenbranches that meets a target BER — see [7] for more
details.

Note that for uncorrelated branches full MREC reduces
to MRC, which is reflected in Figs. 2 and 3 by the similar
AEP/BER-performance of MRC and full MREC for large
AOA dispersion. On the other hand, Fig. 3 confirms that
even order-2 MREC can considerably improve the BER at
a low extra complexity compared to Max-ASNR, even if the
branches are highly correlated (see also Fig. 1).

For approximate MREC with MMSE PSAM, other
AEP/BER plots (not shown here) indicate that, given the
AOA dispersion, overestimating the order L increases the
complexity but never degrades the detection performance [6]
[7]. Thus, approximate MREC with MMSE PSAM functions
as exact MREC. On the other hand, overestimating the order
for approximate MREC with SINC PSAM estimation not only
increases complexity, but degrades the detection performance
as well [6] [7]. These observations are explained by the
remarks at the end of the previous section. An in-depth
analysis of approximate MREC appears in [6] [7].

V. CONCLUSIONS

The paper analyzes maximal-ratio eigen-combining
(MREC), which was recently proposed as an alternative to
conventional maximum average-SNR beamforming (Max-
ASNR BF) as well as maximal-ratio combining (MRC) in
scenarios with partially-correlated channel gains. We provide

a general AEP-expression for exact MREC in the case of
BPSK signals and imperfectly-estimated, partially-correlated
Rayleigh-fading channel gains, and we specialize it for pilot-
symbol-aided channel estimation. For antenna array systems,
numerical results obtained from the analysis and by simulation
indicate that even low-complexity MREC can outperform
Max-ASNR BF considerably if the angle-of-arrival (AOA)
dispersion is more than a few degrees. Furthermore, exact
MREC is always at least as effective as exact MRC, with
more substantial performance and complexity benefits at low
symbol-SNR for channel gains with significant correlation
(greater than 0.8).
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