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ABSTRACT

Joint linear minimum sum mean-squared error (referred to as
MSMSE) transmitter and receiver (transceiver) optimization
problems are formulated for multiuser MIMO systems un-
der a sum power constraint assuming imperfect channel state
information (CSI). Both the uplink and the dual downlink
are considered. Based on the Karush-Kuhn-Tucker (KKT)
conditions associated with both problems, a relation between
the two problems is discovered, which is termed the uplink-
downlink duality in sum MSE under imperfect CSI. As a re-
sult, the MSMSEs in both links are the same and any admissi-
ble uplink design satisfying the KKT conditions can be trans-
lated for application to the downlink, and vice versa. Simula-
tion results are provided to demonstrate the duality and show
the impact of imperfect CSI.

Index Terms— multiuser, MIMO, channel state informa-
tion (CSI), duality

1. INTRODUCTION

Due to its low complexity as well as its effectiveness in man-
aging both multiple access interference and inter-stream inter-
ference, joint minimum sum mean-squared error (MSMSE)
linear precoder-decoder design has been proposed to improve
multiuser MIMO spatial multiplexing systems [1]-[5]. Here-
after we also refer to a precoder and decoder pair for each user
as a transceiver pair.
Joint MSMSE linear transceiver designs for the MIMO

uplink have been studied under both sum power and per-user
power constraints [1][2]. Separate treatment for the down-
link can be found in [3]. More recently, an uplink-downlink
duality1 has been found, which says that with perfect channel
state information (CSI), under the same sum power constraint,
the achievable signal-to-interference-plus-noise ratio (SINR)
regions or the MSE regions for both links are the same [4].
Based on the duality, the more involved downlink problem
has been tackled by forming and solving a dual uplink prob-
lem [4]. The same idea has also been adopted in [5].

This research has been partially supported by Natural Sciences and En-
gineering Research Council of Canada Discovery Grant 41731.

1See [6], P. 449, for an explanation of this term.

In this paper, the imperfectness of channel knowledge is
taken into account in the joint MSMSE designs. Two sum
MSE minimization problems are formulated for the uplink
and the downlink, respectively, subject to sum power con-
straints and under imperfect CSI. The uplink-downlink du-
ality in sum MSE is shown to hold with imperfect CSI. Based
on this duality, the minimum sum MSEs in both links are
the same. Any uplink design satisfying the Karush-Kuhn-
Tucker (KKT) conditions can be translated for application to
the downlink. Unlike the methods in [4][5], our proof of the
duality is solely based on the KKT conditions. Numerical re-
sults are provided to demonstrate the duality. The effect of
channel estimation error as well as antenna correlation at the
base station (BS) on system sum MSE is also investigated.

2. SYSTEMMODELS AND PROBLEM
FORMULATIONS

Consider a single cell in cellular communication systems. The
BS is equipped with M antennas. There are K mobile sta-
tions (MSs, users), each withNi antennas, i = 1, . . . , K. The
uplink channels are denoted by Hi, i = 1, . . . , K, whereas
the dual downlink channels are given byHH

i , i = 1, . . . , K.
A. Uplink system model

Suppose that user i has li data streams, denoted by the
li×1 (li ≤ min(M, Ni)) vector xi, i = 1, . . . ,K. These data
vectors are assumed to be zero-mean, white with E(xixH

i ) =
Ili , for all i (∀i), and mutually independent among users.
Here Im denotes the m × m identity matrix. Before the data
streams are sent into the air, a linear precoder is employed
for each user, which is denoted by the Ni × li matrix Fi,
i = 1, . . . ,K. The signal vector received at the BS antennas
is given by yul =

∑K
i=1 HiFixi +nul. The noise vector nul is

zero-mean white complex Gaussian, i.e.,Nc(0, σ2
n · IM ). The

data and the noise are assumed to be statistically independent.
At the BS, to recover the data for the user j, a linear decoder,
denoted by the lj ×M matrixGj , is used. An estimate of the
data vector for user j, j = 1, . . . ,K, can thus be expressed as
rul,j = Gj · yul = Gj

[∑K
i=1 HiFixi

]
+ Gj · nul.

B. Downlink system model
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In the downlink, it is assumed that the data streams of
user i are denoted by the li × 1 vector si, and the linear pre-
coder for user i at the BS is denoted by theM × li matrixTi,
i = 1, . . . , K. The data vectors are assumed to have the same
statistics as in the uplink. The signal received at the antennas
of user j is given by: ydl,j = HH

j [
∑K

i=1 Tisi] + ndl,j . It is
assumed that the noise vectors, ndl,j ,∀j, are mutually inde-
pendent Nc(0, σ2

n · INj
). Again, the data and the noise are

assumed to be statistically independent. A linear decoderRj

(lj × Nj) is employed to recover sj , j = 1, . . . , K. An esti-
mate of sj is given by rdl,j = Rj ·ydl,j = RjH

H
j [
∑K

i=1 Tisi]+

Rj · ndl,j .

C. Channel model and imperfect channel state information

It is assumed that the antennas at each MS are spatially
uncorrelated due to the presence of a large number of lo-
cal scatterers. Therefore, the uplink channel model is given
by [7]: Hi = Σ1/2

i Hwi, where Σi (seen by user i) is the
normalized BS antenna correlation matrix with unit diago-
nal entries, i = 1, . . . , K. The entries of Hwi are inde-
pendent and identically-distributed (i.i.d.) Nc(0, 1), ∀i. The
dual downlink channel model is given by HH

i = HH
wiΣ

1/2
i ,

i = 1, . . . , K. In practice, CSI is obtained through channel
estimation. The uplink CSI model at the BS can be expressed
as: Hi = Ĥi + Ei, i = 1, . . . , K, where Ĥi = Σ1/2

i Ĥwi,
and Ei = Σ1/2

i Ewi. The entries of Ĥwi and Ewi are i.i.d.
Nc(0, (1 − σ2

Ei)) and Nc(0, σ2
Ei), respectively, where σ2

Ei is
the channel estimation error variance for user i, i = 1, . . . , K.
Furthermore, for each i, the entries of Ĥi and Ei are inde-
pendent. The downlink CSI model is given byHH

i = ĤH
i +

EH
i , i = 1, . . . , K. We assume that the channel estimates

{Ĥi}K
i=1, the channel estimation error variances {σ2

Ei}K
i=1,

the noise variance σ2
n, and the BS antenna correlation matri-

ces {Σi}K
i=1 are available at the BS2.

D. Problem formulations

1) The uplink problem
With the above CSI model,

yul =

K∑
i=1

(Ĥi + Ei)Fixi + nul.

The MSE matrix for user j, j = 1, . . . , K, is given by

MSEul,j = E[(rul,j − xj)(rul,j − xj)
H ]

= Gj

{[
K∑

i=1

ĤiFiF
H
i ĤH

i

]
+ σ2

nIM

}
GH

j

− GjĤjFj − FH
j ĤH

j GH
j + Ilj

+ Gj

[
K∑

i=1

Σ
1/2
i E(EwiFiF

H
i EH

wi)Σ
1/2
i

]
GH

j .

2Here {ai}K
i=1 denotes {a1, . . . , aK}.

Note that E
{
EwiFiFH

i EH
wi

}
= σ2

Eitr(FiFH
i ) · IM . Thus,

MSEul,j =Gj

{[
K∑

i=1

ĤiFiF
H
i ĤH

i

]
+ σ2

n · IM

}
GH

j

+ Gj

[
K∑

i=1

σ2
Ei · tr(FiF

H
i ) · Σi

]
GH

j

− GjĤjFj − FH
j ĤH

j GH
j + Ilj . (1)

The sum MSE from all users is then given by mseul,t =
∑K

j=1 tr(MSEul,j). The uplink problem is to minimize the
sum MSE from all users subject to (s.t.) a sum power con-
straint, i.e.,

min
{(Fj ,Gj)}K

j=1

mseul,t s.t.

K∑
j=1

tr(FjF
H
j ) ≤ PT . (2)

2) The downlink problem
With imperfect CSI, we obtain, for j = 1, . . . ,K,

ydl,j = (ĤH
j + EH

j )

[
K∑

i=1

Tisi

]
+ ndl,j .

Similar to the uplink case, the MSE matrix for user j is cal-
culated as

MSEdl,j =E[(rdl,j − sj)(rdl,j − sj)
H ]

=Rj

{
ĤH

j

[
K∑

i=1

TiT
H
i

]
Ĥj + σ2

nINj

}
RH

j

+ σ2
Ej · tr

{
Σj

[
K∑

i=1

TiT
H
i

]}
· RjR

H
j

− RjĤ
H
j Tj − TH

j ĤjR
H
j + Ilj . (3)

The sumMSE for the downlink can be expressed asmsedl,t =
∑K

j=1 tr(MSEdl,j). The downlink problem is formulated as

min
{(Tj ,Rj)}K

j=1

msedl,t s.t.

K∑
j=1

tr(TjT
H
j ) ≤ PT . (4)

In the following, we assume that the joint optimizations
are performed at the BS, and then the optimum filters (i.e.,
precoders/decoders) for the users are sent to the MSs.

3. UPLINK AND DOWNLINK DUALITY IN SUM
MSEWITH IMPERFECT CSI

A. The KKT conditions
To solve the uplink problem (2), we first formulate the

associated Lagrangian:

Lul = mseul,t + μul ·
{[

K∑
j=1

tr(FjF
H
j )

]
− PT

}
,
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where μul is the Lagrange multiplier associated with the sum
power constraint. The associated KKT conditions can be ob-
tained and are given by (5)-(8) (Note: k = 1, . . . , K).
The Lagrangian associated with (4) is given by

Ldl = msedl,t + μdl ·
{[

K∑
j=1

tr(TjT
H
j )

]
− PT

}
,

where μdl is the Lagrange multiplier. The associated KKT
conditions for (4) are obtained similarly as in the uplink case,
and are given by (9)-(12) (Note: k = 1, . . . , K).

FH
k ĤH

k = Gk

{
K∑

j=1

ĤjFjF
H
j ĤH

j + σ2
n · IM

}

+ Gk

[
K∑

j=1

σ2
Ej · tr(FjF

H
j ) · Σj

]
, (5)

ĤH
k GH

k =

{
ĤH

k

[
K∑

j=1

GH
j Gj

]
Ĥk

}
Fk

+

{
μul + σ2

Ek

K∑
j=1

tr(GjΣkG
H
j )

}
Fk, (6)

μul ≥ 0,

K∑
j=1

tr(FjF
H
j ) ≤ PT , (7)

μul ·
[

K∑
j=1

tr(FjF
H
j ) − PT

]
= 0. (8)

ĤkR
H
k =

{
K∑

j=1

ĤjR
H
j RjĤ

H
j + μdl · IM

}
Tk

+

[
K∑

j=1

σ2
Ej · tr(RjR

H
j ) · Σj

]
Tk, (9)

TH
k Ĥk = Rk

{
ĤH

k

[
K∑

j=1

TjT
H
j

]
Ĥk

}

+ Rk

{
σ2

n + σ2
Ek

K∑
j=1

tr(TH
j ΣkTj)

}
, (10)

μdl ≥ 0,

K∑
k=1

tr(TkT
H
k ) ≤ PT , (11)

μdl ·
[

K∑
k=1

tr(TkT
H
k ) − PT

]
= 0. (12)

Proposition 1: (Relation between the Lagrange multipli-
ers and the receive filters) For any solutions satisfying the
KKT conditions, the following identities hold:

μul = (σ2
n/PT ) ·

K∑
k=1

tr(GkG
H
k ), (13)

μdl = (σ2
n/PT ) ·

K∑
k=1

tr(RkR
H
k ). (14)

Proof: The proof is based on the KKT conditions for both
problems. Details are omitted due to space constraints.
B. Uplink-downlink duality in sum MSE
Proposition 2: Let {Fk,Gk}K

k=1 denote an admissible set
of precoder-decoder pairs for the uplink sum MSE perfor-
mance that satisfies the KKT conditions (5)-(8). Let Tk =√

σ2
n/μul · GH

k , and let Rk satisfy (10), k = 1, . . . , K. Then
under the same sum power constraint, the sum MSE achieved
in the uplink by {Fk,Gk}K

k=1 can be achieved by {Tk,Rk}K
k=1,

which satisfies the KKT conditions for the downlink prob-
lem. Conversely, assume that {Tj ,Rj}K

j=1 is an admissible
set for the downlink sum MSE performance that satisfies the
KKT conditions (9)-(12). Let Fj =

√
σ2

n/μdl · RH
j , and let

Gj satisfy (5), j = 1, . . . , K. Then under the same sum
power constraint, the sum MSE achieved in the downlink by
{Tj ,Rj}K

j=1 can be achieved by {Fj ,Gj}K
j=1, which satisfies

the KKT conditions for the uplink.
Proof: See the Appendix. The proof is solely based on

the KKT conditions (5)-(8) for the uplink problem and (9)-
(12) for the downlink problem.
Remark: We have shown that if a solution satisfying the

uplink KKT conditions achieves a certain sum MSE, this sum
MSE can also be achieved by a solution satisfying the down-
link KKT conditions, and vice versa. It can be shown that a
global minimum exists for both (2) and (4) (by applying the
Weierstrass Theorem [9] to their equivalent problems). Fur-
thermore, the problems (2) and (4) are not convex, but the ob-
jective and constraint functions for both problems are contin-
uously differentiable. Thus the KKT conditions are necessary
for local (global) minimums [9]. Since, by Proposition 2, ev-
ery possible local minimum (satisfying the KKT conditions)
of the uplink sumMSE corresponds to a same local minimum
in the downlink, we conclude that the globally minimum sum
MSEs for the uplink and downlink must be the same (under
the same sum power constraint and the same imperfect CSI).
Proposition 2 matches the duality results in [4][5] when

σ2
Ej = 0 and generalizes the sum MSE duality results when

σ2
Ej > 0, ∀j. It reveals the underlying connections between
the uplink and downlink problems based on KKT conditions,
whereas previous duality results were obtained by calculating
the individual SINRs or MSEs for each user in both links.

4. NUMERICAL RESULTS

The correlation matrix for the BS antennas is given byΣi,pq =
ρ
|p−q|
i , 0 ≤ ρi < 1, p, q ∈ {1, . . . ,M}, i = 1, . . . , K. 4-
QAM is used for each user’s data streams in both links. For
convenience, let li = Ni = N = L and σ2

Ei = σ2
E , i =

1, . . . ,K. Fig. 1 shows the sum MSE for both links with
σ2

E = 0 or 0.01 and with different amounts of antenna cor-
relation3. Since the corresponding curves overlap, the results

3To obtain a solution {Fj ,Gj}K
j=1 for the uplink problem, we first ex-

tend and improve the KKT-conditions-based methods in [2] to the case with
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agree with Proposition 2. The channel estimation error in-
troduces an error floor in sum MSE and causes significant
performance degradation. Antenna correlation at the BS also
has a large effect on system sum MSE.
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Fig. 1. Sum MSE results

5. CONCLUSIONS

Joint MSMSE linear transceiver design problems are formu-
lated for multiuser MIMO uplink and downlink assuming im-
perfect CSI. A duality in sum MSE between these two de-
signs has been proved based on the associated KKT condi-
tions. Simulation results obtained agree with the duality and
demonstrate the effect of imperfect CSI on sum MSE.

6. APPENDIX: PROOF OF PROPOSITION 2

Proof: Due to space limitations, we only provide an outline.
We begin with the forward part. Suppose that we are given
{Fk,Gk}K

k=1, a set of precoder-decoder pairs for the uplink
sum MSE that satisfies the KKT conditions (5)-(8). Then
based on the KKT conditions, after some manipulations [8],
we obtainmseul,t =

∑K
i=1 tr(Ili)−

∑K
i=1 tr(ĤH

i GH
i FH

i ). Fur-
thermore, define Ai = ĤH

i GH
i GiĤi, Bi,k = ĤH

i GH
k GkĤi,

and ci,k = tr(GkΣiG
H
k ), i, k = 1, . . . , K , and we get:

mseul,t =

K∑
i=1

tr(Ili) −
K∑

i=1

tr(Xi), where

Xi = Ai

{
K∑

k=1

Bi,k +

[
μul + σ2

Ei ·
K∑

k=1

ci,k

]
· INi

}−1

. (15)

imperfect CSI under a sum power constraint. We then apply Proposition 2
to obtain {Tj ,Rj}K

j=1 for the downlink.

In the downlink, let Tk = αk · GH
k , where αk is a scalar

(whose choice will be discussed later) , and letRk be related
to Tk as given by (10), k = 1, . . . , K. We obtain msedl,t =∑K

j=1 tr(Ilj ) −
∑K

j=1 tr(ĤH
j TjRj). Further, we can express

msedl,t in terms of {Gk}K
k=1 as follows:

msedl,t =

K∑
j=1

tr(Ilj ) −
K∑

j=1

tr(Yj), where

Yj = Aj{
K∑

k=1

|αk|2
|αj |2 Bj,k + (

σ2
n

|αj |2 + σ2
Ej

K∑
k=1

|αk|2cj,k

|αj |2 )INj}−1.

(16)

Note that the choice of {αk}K
k=1 should satisfy the sum power

constraint for the downlink, i.e.,
K∑

k=1

tr(TkT
H
k ) =

K∑
k=1

|αk|2tr(GH
k Gk) ≤ PT . (17)

On the other hand, from (13),
∑K

k=1
σ2

n

μul
tr(GH

k Gk) = PT .
If we choose αk =

√
σ2

n/μul, k = 1, . . . , K, from (15) and
(16), the sum MSE for both links will be identical while (17)
is satisfied with equality. {Tk,Rk}K

k=1 chosen here can also
satisfy (9), (11) and (12). This concludes the forward part.
Using similar arguments, we can prove the converse state-
ment.
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