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Abstract— Duality between the multi-antenna multi-user up-
link and the downlink has been discovered in terms of sum rate,
capacity region, signal-to-interference-plus-noise-ratio (SINR) re-
gion or normalized mean-squared error (MSE) region. Previous
work on duality has assumed perfect channel knowledge. How-
ever, channel estimation is never perfect in practice. In this paper,
channel estimation error as well as antenna correlation at the
base station (BS) is taken into account. A multi-user system with
multiple antennas at the BS and with single-antenna users is
studied. Joint detection and transmission are used in the uplink
and the downlink, respectively. It is analytically shown that with
imperfect channel state information (CSI), under the same sum
power constraint, the achievable SINR regions or the normalized
MSE regions in both links are the same, as in the case with
perfect CSI. Monte Carlo simulation results and discussions are
also provided to complement the analysis.

I. INTRODUCTION

During the past decade, multi-antenna systems have been
subject to extensive research. Recently, the focus has been
shifting from single-user to multi-user multi-antenna systems.

In multi-antenna multi-user systems, from the information-
theoretic point of view, the multiple-access channel (MAC,
uplink) is better understood than the broadcast channel (BC,
downlink), due to their differences in interference and coopera-
tion [1][2]. From the viewpoint of signal processing, the uplink
is also easier to deal with than the downlink [3]-[6]. However,
the uplink and the dual downlink are inherently related. In [7],
the capacity region of scalar Gaussian MAC is shown to be
equal to the capacity region of the dual scalar Gaussian BC
with the same noise power at each receiver and under the same
sum power constraint. In [8], a duality is established between
the dirty-paper achievable rate region of Gaussian multiple-
input multiple-output (MIMO) BC and the capacity region
of Gaussian MIMO MAC. Furthermore, in a system with
multiple antennas at the BS and with single-antenna users,
under perfect channel knowledge, with the same sum power,
the achievable SINR regions and normalized MSE regions for
both links are the same, when noise variances are identical at
all receivers [4][9][10]. Because of duality, problems in the
downlink can be solved by forming and solving a dual uplink
problem [4]-[6], which is very convenient.

Most previous research on duality has assumed perfect CSI.
In practice, CSI is obtained from channel estimation and is
always imperfect. We therefore need to account for this in

system design. In [11], a multi-user system with multiple
antennas at the BS and with single-antenna users is studied.
There it is shown that with zero-forcing (ZF) joint detection
in the uplink and ZF joint transmission in the dual downlink,
the bit error probabilities (BEPs) in both links are the same
under perfect CSI. When there is channel estimation error,
the BEPs in both links are not exactly the same, but the
effects of channel estimation error on the BEPs of both
links are comparable [11]. This motivates us to find out
whether duality exists in term of other performance metrics
between the uplink and the dual downlink under imperfect
CSI. Although the result in [11] is enlightening, the analysis
there is based on a linear Taylor series approximation of the
channel estimation error and cannot be easily generalized. A
more general analytical framework is desired, which can be
used for performance metrics other than BEP or for non-ZF
beamforming.

Since many performance criteria in communication system
designs are related to MSE or SINR [12], in this paper, we
use the framework in [9][10] and show by analysis that the
uplink-downlink duality holds in normalized MSE and SINR
regions with imperfect channel estimation. Our result extends
the duality analysis in [9][10] to the case of imperfect channel
estimation and antenna correlation at the base station. The
approach here is different from that in [11]. Simulation results
are provided, which illustrate our analysis and agree with
previous analysis and simulation results in [11].

Notation: upper (lower) case boldface letters are for matrices
(vectors); E{·} denotes statistical expectation and tr(·) stands
for trace; |a| denotes the magnitude of complex scalar a; (·)∗
means complex conjugate and (·)H means complex conjugate
transpose (Hermitian); Nc(·, ·) denotes the complex Gaussian
distribution; I is reserved for the identity matrix and 1 for
the all-one column vector; diag{. . .} is a diagonal matrix
containing entries within the brackets.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System model

Consider a single cell in a cellular system with K users,
each with a single antenna. The BS has M antennas. Assume
M ≥ K. The uplink channel is described by a M ×K matrix
H = [h1, . . . ,hK ], and the column vector hi denotes the
channel from user i to the BS, i = 1, . . . , K. We consider
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correlation among the BS antennas. The uplink channel model
with correlation is described by [13]:

H = R1/2Hw, (1)

where R is the normalized correlation matrix at the BS with
unit diagonal entries. Hw denotes a spatially white matrix,
whose entries are independent and identically distributed
(i.i.d.) with a complex Gaussian distribution Nc(0, 1). The
corresponding dual downlink channel is simply denoted by
HH .

The uplink is described by Fig. 1 [9][10]. Here signals
from each user are i.i.d. with unit-energy and are individually
power-controlled by a diagonal matrix Q1/2, where Q =
diag{q1, . . . , qK}. The signals are then transmitted through
a Rayleigh flat-fading channel. The noise vector w has i.i.d.
entries Nc(0, σ2

n) and is independent of the data or channel
realizations. At the receiver (BS), a joint detector (denoted
by G) is used to separate different users, which corresponds
to a normalized beamforming set UH followed by a diagonal
matrix Θ in Fig. 1. Thus G = ΘUH , Θ = diag{θ1, . . . , θK},
and U = [u1, . . . ,uK ] with ‖uj‖2 = 1, j = 1, . . . , K. Here
the columns of GH are normalized and then collected in U,
whereas the column norms are the diagonal entries of Θ. The
signal received from the k-th user (k = 1, . . . ,K) can be
written as

x̂UL
k =

θk√
qk

uH
k







K∑
j=1

hj · xUL
j · √qj


 + w


 (2)

=
θk√
qk

uH
k

[
HQ1/2xUL + w

]
. (3)

The downlink signal model is given in Fig. 2 [9][10].
The signal vector xDL with i.i.d. unit-energy entries denotes
the symbols intended for each user. The signal vector is
then power-controlled by the diagonal matrix P1/2, where
P = diag{p1, . . . , pK}. The matrix U = [u1, . . . ,uK ] is the
collection of normalized transmit signatures (beamformers) for
different users, i.e., ‖uj‖2 = 1, j = 1, . . . , K. The diagonal
matrix Θ = diag{θ1, . . . , θK} provides additional freedom to
control the MSE performance [10]. The received signal of user
k (k = 1, . . . , K) is

x̂DL
k =

θk√
pk


hH

k




K∑
j=1

uj · xDL
j · √pj


 + nk


 (4)

=
θk√
pk

{
hH

k UP1/2xDL + nk

}
. (5)

The noise of each user, nk (k = 1, . . . ,K), is assumed to be
i.i.d. Nc(0, σ2

n) and independent of the data vector.

Note that we have used the same notation for the uplink
and downlink beamformers {uj} and scaling {θj}, j =
1, . . . ,K. The purpose of this will become clear in the problem
statement.
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Fig. 2. Downlink signal model

B. Channel estimation and the CSI model

The following CSI model is used for the uplink [14]:

H = Ĥ + E = Ĥ + R1/2
e Ew. (6)

In a vector form, (6) becomes

hk = ĥk + ek = ĥk + R1/2
e ew,k, k = 1, . . . , K. (7)

Here H is the true channel, Ĥ is the linear minimum mean-
squared error (LMMSE) channel estimate [16]. Re is the
equivalent correlation matrix resulting from channel estimation
and Re = R(R + σ2

ceI)
−1, where σ2

ce is the variance of
channel estimation error and R has been introduced earlier as
the BS antenna correlation matrix. The matrix Ew is spatially
white, whose entries are i.i.d. Nc(0, σ2

ce). Note that the entries
of matrix E (= R1/2

e Ew) are correlated. In the following,
we assume that Ĥ, R, σ2

ce and σ2
n are known at the BS,

which are referred to as the CSI. The corresponding CSI model
for the dual downlink is the Hermitian operation on (6) (or,
equivalently, (7)).

C. Problem statement

The objective is to determine whether the uplink and the
dual downlink can achieve the same set of SINRs or normal-
ized MSEs with the same sum power constraint, using the
same set of normalized beamformers and scaling, and under
the CSI model given above in Section II-B.

III. DUALITY ANALYSIS UNDER IMPERFECT CSI

A. Downlink

Consider the downlink channel. From (4), (5) and (7), when
there is channel estimation error, the received signal at user k
(k = 1, . . . , K) can be expressed as

x̂DL
k = θk · ĥH

k uk · xDL
k + Ik,DL, (8)

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

3787

Authorized licensed use limited to: Queens University. Downloaded on May 2, 2009 at 20:04 from IEEE Xplore.  Restrictions apply.



where Ik,DL denotes the total interferences plus noise and

Ik,DL

=
θk√
pk


(

K∑
j=1,j �=k

ĥH
k ujx

DL
j p

1/2
j ) + eH

k UP1/2xDL + nk


 .

Here Ik,DL includes an interference term caused by channel
estimation error.

The variance of eH
k UP1/2xDL is calculated as [15]

E{eH
k UP1/2xDL(xDL)HP1/2UHek}

=E{eH
w,kR

1/2
e UPUHR1/2

e ew,k}
=σ2

ce · tr{ReUPUH}.
Using the uncorrelatedness among data symbols, channel noise
and channel estimation error, we can show that the variance
of Ik,DL (k = 1, . . . ,K) is

E
{|Ik,DL|2

}

=
θ2

k

pk


σ2

n + σ2
ce · tr{ReUPUH} +

K∑
j=1,j �=k

|ĥH
k uj |2 · pj


 .

(9)

It is clear that the SINR of user k is

SINRDL
k

=
|ĥH

k uk|2 · pk

σ2
n + σ2

ce · tr{ReUPUH} +
∑K

j=1,j �=k |ĥH
k uj |2 · pj

.

(10)

The normalized MSE between x̂DL
k and xDL

k is given by

εDL
k =E{|x̂DL

k − xDL
k |2}

=
θ2

k

pk


σ2

n + σ2
ce · tr{ReUPUH} +

K∑
j=1

|ĥH
k uj |2 · pj




− θk · ĥH
k uk − θk · uH

k ĥk + 1. (11)

Define

aDL
k =

SINRDL
k

(1 + SINRDL
k )|ĥH

k uk|2
, k = 1, . . . ,K,

=
pk

σ2
n + σ2

ce · tr(ReUPUH) +
∑K

j=1 |ĥH
k uj |2 · pj

.

Then we have

pk =


σ2

n + σ2
cetr(ReUPUH) +

K∑
j=1

|ĥH
k uj |2 · pj


 aDL

k .

(12)

Let p = [p1, . . . , pK ]T and DDL = diag{aDL
1 , . . . , aDL

K }.
Define a matrix Φ whose (i, j)-th element is given by |uH

j ĥi|2,
1 ≤ i, j ≤ K. Based on (12),

p = [σ2
n + σ2

ce · tr(ReUPUH)] · DDL · 1 + DDL · Φ · p,

which is equivalent to

p = [σ2
n + σ2

ce · tr(ReUPUH)] · (D−1
DL − Φ

)−1
1. (13)

B. Uplink

Now we turn to the uplink channel. Under imperfect CSI,
the received signal of user k (k = 1, . . . ,K) at the BS is
expressed as

x̂UL
k = θk · uH

k ĥk · xUL
k + Ik,UL, (14)

where Ik,UL is the total noise and interference and

Ik,UL

=
θk√
qk


(

K∑
j=1,j �=k

uH
k ĥjx

UL
j q

1/2
j ) + uH

k EQ1/2xUL + uH
k w


 .

The variance of uH
k EQ1/2xUL is

E{uH
k EQ1/2xUL(xUL)HQ1/2EHuk}

=uH
k R1/2

e E{EwQEH
w }R1/2

e uk

=uH
k R1/2

e

{
σ2

ce · tr(Q) · I}R1/2
e uk

=σ2
ce · tr(Q) · uH

k Reuk,

and then the variance of Ik,UL (k = 1, . . . ,K) is given by

E
{|Ik,UL|2

}

=
θ2

k

qk


σ2

n + σ2
cetr{Q} · uH

k Reuk +
K∑

j=1,j �=k

|uH
k ĥj |2qj


 .

(15)

In the above, we have used the fact that ‖uk‖2 = 1, k =
1, . . . ,K, and the uncorrelatedness among data symbols, chan-
nel noise and channel estimation error. Thus the SINR of user
k (k = 1, . . . ,K) is equal to

SINRUL
k

=
qk · |uH

k ĥk|2
σ2

n + σ2
cetr{Q} · uH

k Reuk +
∑K

j=1,j �=k |uH
k ĥj |2qj

. (16)

Correspondingly, the normalized MSE of user k is

εUL
k =E{|x̂UL

k − xUL
k |2}

=
θ2

k

qk


σ2

n + σ2
cetr{Q} · uH

k Reuk +
K∑

j=1

|uH
k ĥj |2qj




− θk · uH
k ĥk − θk · ĥH

k uk + 1. (17)

Let

aUL
k =

SINRUL
k

(1 + SINRUL
k )|uH

k ĥk|2
, k = 1, . . . , K,

=
qk

σ2
n + σ2

ce · tr(Q) · uH
k Reuk +

∑K
j=1 |uH

k ĥj |2 · qj

.

Then

qk =


σ2

n + σ2
cetr(Q) · uH

k Reuk +
K∑

j=1

|uH
k ĥj |2 · qj


 aUL

k .

(18)
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Let q = [q1, . . . , qK ]T , DUL = diag{aUL
1 , . . . , aUL

K }, and
b = [uH

1 Reu1, . . . ,uH
KReuK ]T . From (18),

q = σ2
n · DUL · 1 + σ2

ce · tr(Q) · DUL · b + DUL · ΦT · q.

Therefore,

q = σ2
n

(
D−1

UL − ΦT
)−1

1 + σ2
cetr(Q)

(
D−1

UL − ΦT
)−1

b.
(19)

C. Results

Result 1: (Relation between SINR and normalized MSE
under imperfect CSI) Assume the same sets of {uj} and
{θj}, j = 1, . . . ,K are used for both the uplink and the
downlink. Assume p (q) achieves the downlink (uplink)
SINRDL

k (SINRUL
k ) for user k, k = 1, . . . , K. If SINRDL

k

is equal to SINRUL
k , then the normalized MSE εDL

k = εUL
k ,

k = 1, . . . ,K, and vice versa.

Proof: Using (10), (11), (16) and (17), the result is straight-
forward. �

Result 2: (Duality in normalized MSE or SINR with
channel estimation error and antenna correlation at BS)
If the uplink and dowlink employ the same sets of {uj} and
{θj}, j = 1, . . . , K, and they achieve the same set of SINRs
(or normalized MSEs) under imperfect CSI, then the sum
powers in both links are equal.

Proof: Consider the downlink case. Let α be equal to [σ2
n +

σ2
ce · tr(ReUPUH)] in (13), i.e.,

p = α · (D−1
DL − Φ

)−1
1. (20)

Note that

tr(P) = 1T p = α · 1T
(
D−1

DL − Φ
)−1

1, (21)

tr(ReUPUH) =
K∑

j=1

pj · uH
j Reuj = pT b, (22)

1T
(
D−1

DL − Φ
)−1

1 = 1T
(
D−1

DL − ΦT
)−1

1. (23)

Then we obtain

1T p
(13)(22)

= (σ2
n + σ2

ce · pT b) · 1T
(
D−1

DL − Φ
)−1

1,

(21)
= σ2

n · 1T
(
D−1

DL − Φ
)−1

1 + σ2
ce · pT b · tr(P)/α,

(20)(23)
= σ2

n · 1T
(
D−1

DL − ΦT
)−1

1

+ σ2
ce · tr(P) · 1T

(
D−1

DL − ΦT
)−1

b.

Therefore,

tr(P) =
σ2

n · 1T
(
D−1

DL − ΦT
)−1

1

1 − σ2
ce · 1T

(
D−1

DL − ΦT
)−1

b
.

For the uplink, from (19),

1T q = tr(Q) =σ2
n · 1T

(
D−1

UL − ΦT
)−1

1

+ σ2
ce · tr(Q) · 1T

(
D−1

UL − ΦT
)−1

b,

and thus

tr(Q) =
σ2

n · 1T
(
D−1

UL − ΦT
)−1

1

1 − σ2
ce · 1T

(
D−1

UL − ΦT
)−1

b
.

When the uplink and the downlink achieve the same set of
SINRs (or normalized MSEs, based on Result 1), i.e., DUL =
DDL, we must have tr(Q) = tr(P). This concludes the proof
of Result 2. �

Based on the above proof, Result 2 can also be expressed
as follows: If tr(P) = tr(Q) and the same sets of {uj} and
{θj}, j = 1, . . . ,K, are used for both links, then the set of
SINRs (or normalized MSEs) is achievable in the downlink if
and only if it is achievable in the uplink, under the imperfect
CSI.

The implications of the above two results are that when
channel estimation is imperfect at the BS, SINR or normalized
MSE based downlink system design problems can still be
solved by dealing with a dual uplink problem.

IV. NUMERICAL RESULTS

In this section, we provide numerical results to complement
the analysis. In the following, K = M = 5 and σ2

n = 1. Let
PT represent the sum power for all users, i.e., PT = tr(P) =
tr(Q). The correlation model for the BS antennas is chosen
as in [17]: (R)ij = ρ|i−j|, 0 ≤ ρ < 1, i, j ∈ {1, . . . , nT }.
4-QAM is used for each user’s data stream in both links.

For the uplink, we assume uniform power allocation among
users, i.e., q = (PT /K) · 1. The LMMSE joint detection
is employed at the BS based on the channel estimates. For
the downlink, we use the duality results to find the joint
transmission strategy. For each channel realization, we first
find U, Θ and Φ from the dual uplink using LMMSE joint
detection, given the channel estimate. We also calculate the
SINRs for the uplink. The power allocation matrix P is
then calculated using (13). After obtaining U and P, joint
transmission for the downlink can be performed. Without loss
of generality, we calculate the average normalized MSE and
BEP of user 1 from Monte Carlo simulations.

Fig. 3 shows the BEP results. When channel estimation is
perfect, the BEPs of user 1 in both links are equal. If there is
channel estimation error, the two BEP curves diverge when PT

is large and channel estimation error becomes the dominant
source of errors. A similar phenomenon has been observed
in [11], when zero-forcing beamformers are used for both
links. Based on the analysis and simulations in [11] as well
as Fig. 3, the BEPs of user 1 in both links are not the same
at (relatively) high SNR under imperfect CSI. However, from
Fig. 4, we can see that both links achieve the same average
normalized MSEs, with or without channel estimation error.
This agrees with our analysis in previous section1. Similar

1Note that in (10), (11), (16) and (17), we have used the statistical
averages of the interference-plus-noise powers in the calculations of SINRs
or normalized MSEs. In practice and in our Monte Carlo simulations, we
use the actual realizations of the interference-plus-noise powers. Therefore,
one should not be surprised if there is a discrepancy between the simulation
results and the analysis. However, as shown by Fig. 4, the simulation results
and the analysis agree quite well for the normalized MSE.
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results can be observed for other values of ρ or with non-
uniform power allocations in the uplink.

We now provide more insight into the results in Fig. 3
and Fig. 4. From (10), (11), (16) and (17), we can see that
the derivations of SINRs or normalized MSEs depend largely
on the second-order statistics of fading, channel noise and
channel estimation error, which are the same for the dual links.
Therefore, the normalized MSEs of both links seem to be the
same. On the other hand, the BEPs depend on the interference-
plus-noise distributions, which vary with the relative strengths
of the interferences. When there is channel estimation error,
the interference strengths depend on PT and this dependence
is possibly different for the uplink and downlink (See (9)
and (15)). Therefore, the BEPs become noticeably unequal
when PT is relatively large (and thus channel estimation error
becomes the dominant source of errors).
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Fig. 3. BEP performance of user 1, K = M = 5.
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V. CONCLUSIONS

We have investigated the uplink-downlink duality in a
system with multiple antennas at the BS and with single-
antenna users under imperfect CSI at the BS. We have shown
by analysis that duality holds in terms of SINR or normalized
MSE regions under imperfect CSI. Simulations results for the
normalized MSEs with LMMSE joint detection in the uplink
and LMMSE joint transmission in the downlink verify our
analysis.
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