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The impact of interference on multiple-input multiple-output (MIMO) systems has recently attracted interest. Most studies of
channel estimation and data detection for MIMO systems consider spatially and temporally white interference at the receiver.
In this paper, we address channel estimation, interference correlation estimation, and data detection for MIMO systems under
both spatially and temporally colored interference. We examine the case of one dominant interferer in which the data rate of the
desired user could be the same as or a multiple of that of the interferer. Assuming known temporal interference correlation as a
benchmark, we derive maximum likelihood (ML) estimates of the channel matrix and spatial interference correlation matrix, and
apply these estimates to a generalized version of the Bell Labs Layered Space-Time (BLAST) ordered data detection algorithm. We
then investigate the performance loss by not exploiting interference correlation. For a (5, 5) MIMO system undergoing indepen-
dent Rayleigh fading, we observe that exploiting both spatial and temporal interference correlation in channel estimation and data
detection results in potential gains of 1.5 dB and 4 dB for an interferer operating at the same data rate and at half the data rate,
respectively. Ignoring temporal correlation, it is found that spatial correlation accounts for about 1 dB of this gain.

Keywords and phrases: multiple-input multiple-output, interference, channel estimation, data detection.

1. INTRODUCTION

Wireless systems with multiple transmitting and receiving
antennas have been shown to have a large Shannon channel
capacity in a rich scattering environment [1, 2]. By transmit-
ting parallel data streams over a multiple-input multi-output
(MIMO) channel, it was shown that the Shannon capacity of
the MIMO channel increases significantly with the number
of transmitting and receiving antennas [2]. Layered space-
time architectures were proposed for high-rate transmission
in [3, 4]. Space-time coding techniques have also been inves-
tigated [5, 6].

While substantial research efforts have focussed on
point-to-point MIMO link performance, the impact of in-
terference on MIMO systems has received less interest. In
a cellular environment, cochannel interference (CCI) from
other cells exists due to channel reuse. In [7], channel capac-
ities in the presence of spatially colored interference were de-
rived under different assumptions of knowledge of the chan-
nel matrix and interference statistics at the transmitter. The

impact of spatially colored interference on MIMO channel
capacity was studied in [8, 9, 10]. The capacity of MIMO
systems with interference in the limiting case of a large num-
ber of antennas was studied in [11]. The overall capacity of
a group of users, each employing a MIMO link, was inves-
tigated in [12]. The output signal-to-interference power ra-
tio (SIR) was analytically calculated in [13], when a single
data stream is transmitted over independent Rayleigh MIMO
channels. While the majority of the studies deals with chan-
nel capacity, in this paper we focus on the achievable symbol
error rate performance of a MIMO link with interference.

Prior results on estimation of vector channels and spa-
tial interference statistics for code division multiple access
(CDMA) single-input multiple-output systems can be found
in [14]. Most studies of channel estimation and data de-
tection for MIMO systems assume spatially and temporally
white interference. For example, in [15], maximum likeli-
hood (ML) estimation of the channel matrix using training
sequences was presented assuming temporally white interfer-
ence. Assuming perfect knowledge of the channel matrix at
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the receiver, ordered zero-forcing (ZF) and minimum mean-
squared error (MMSE) detection were studied for both spa-
tially and temporally white interference in [4, 16], respec-
tively. However, in cellular systems, the interference is, in
general, both spatially and temporally colored.

In this paper, we propose and study a new algorithm that
jointly estimates the channel matrix and the spatial interfer-
ence correlation matrix in an ML framework. We develop a
multi-vector-symbol MMSE data detector that exploits in-
terference correlation. In the case of a single dominant in-
terferer and large signal-to-noise ratio (SNR), we show that
spatial and temporal second-order interference statistics can
be decoupled in the form of a matrix Kronecker product. In
finite SNR, the decoupling of spatial and temporal statistics
of interference-plus-noise is only an approximation. We also
determine the conditions where this approximation breaks
down.

Although temporal interference correlation is difficult to
estimate in practice, our objectives are to determine the per-
formance benchmark achieved if temporal correlation was
known. As sources of temporal correlation, we consider cases
in which the data rate of the desired user is either the same as
or a multiple of that of the interferer. The new ML algorithm
serves as a performance benchmark when temporal and spa-
tial interference correlation are exploited in joint channel es-
timation and data detection. We also assess the performance
improvement obtained in more practical cases where only
part of the correlation information is exploited, including the
performance obtained by assuming temporally white inter-
ference, that is, ignoring temporal correlation.

The paper is organized as follows. In Section 2, we
present our system model of temporal and spatial interfer-
ence. In Section 3, we derive ML estimates of channel and
spatial interference correlation matrices assuming known
temporal interference correlation. In Section 4, one-vector-
symbol detection is extended to a multi-vector-symbol ver-
sion which is used to exploit temporal interference correla-
tion. In Section 5, we consider the case of one interferer and
large SNR and assess the benefits of taking temporal and/or
spatial interference correlation into account for channel esti-
mation and data detection. We then examine the level of SNR
at which the approximation of separate spatial and temporal
interference-plus-noise statistics break down. In cases where
the spatial and temporal correlation are not separable, the
performance improvement obtained by exploiting the spa-
tial correlation is evaluated. For reference, comparisons are
made to the well-known direct matrix inversion (DMI) al-
gorithm [17], generalized to multiple input signals, a batch
method that does not require estimates of channel and spa-
tial interference correlation matrices.

In this paper, the notation (·)T refers to transpose, (·)∗
refers to conjugate, (·)† refers to conjugate transpose, and IN
refers to an N ×N identity matrix.

2. SYSTEM MODEL

We consider a single-user link consisting of Nt transmitting
and Nr receiving antennas, denoted as (Nt,Nr). The desired

user transmits data frame by frame. Each frame has M data
vectors. The first N data vectors are used for training, so that
the desired user’s channel matrix and interference statistics
can be estimated, and the remaining data vectors are for in-
formation transmission. In a slow flat fading environment,
the received signal vector at time j is expressed as

y j = Hx j + n j , j = 0, . . . ,M − 1, (1)

where x j is the transmitted data vector, H is the Nr × Nt

spatial channel gain matrix, and the interference vector n j

is zero-mean circularly symmetric complex Gaussian. We as-
sume that the channel matrix H is fixed during one frame.
This is a reasonable assumption since high-speed data ser-
vices envisioned for MIMO systems are generally intended
for low mobility users. By the same argument, it is also as-
sumed that the interference statistics are fixed during one
frame.

In practice, the interference may be both spatially and
temporally correlated. We assume that the cross correlation
between the interference vectors at time i and j is E{nin

†
j } =

ΛΛΛM(i, j)R, whereΛΛΛM(i, j) is the (i, j)th element of an M×M
matrix ΛΛΛM . The (i, j)th element of matrix R is the correla-
tion between the ith and jth elements of interference vector
nk, k ∈ 0, . . . ,M− 1. As a result, the covariance matrix of the
concatenated interference vector n̄ = [nT

0 · · ·nT
M−1]T is

E
{

n̄n̄†
} =




ΛΛΛM(0, 0)R · · · ΛΛΛM(0,M − 1)R
...

...

ΛΛΛM(M − 1, 0)R · · · ΛΛΛM(M − 1,M − 1)R




= ΛΛΛM ⊗ R,
(2)

where⊗ denotes Kronecker product, and matricesΛΛΛM and R
capture the temporal and spatial correlation of the interfer-
ence, respectively. The above model implies that the spatial
and temporal interference statistics are separable. The corre-
lation matricesΛΛΛM and R are determined by the application-
specific signal model. In Section 5, we provide an example
in which the interference covariance matrix has the above
Kronecker product form. When the interference statistics can
only be approximated by (2), the conditions where this ap-
proximation breaks down are investigated in Section 5.4.3.
In addition to interference correlation, we remark that a de-
coupled temporal and spatial correlation structure arises in
the statistics of fading vector channels consisting of a mobile
with one antenna and a base station with an antenna array
[18].

3. JOINT ESTIMATION OF CHANNEL AND SPATIAL
INTERFERENCE STATISTICS

During a training period of N vector symbols, we concate-
nate the received signal vectors, the training signal vectors
and the interference vectors as ȳ = [yT

0 · · · yT
N−1]T , x̄ =

[xT
0 · · · xT

N−1]T , and n̄ = [nT
0 · · ·nT

N−1]T , respectively. The
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received signal in (1) is rewritten as the vector

ȳ = (IN ⊗H
)

x̄ + n̄, (3)

where n̄ is circularly symmetric complex Gaussian with zero-
mean and covariance matrixΛΛΛN ⊗R. Assuming prior knowl-
edge of temporal interference correlation matrixΛΛΛN , we need
to estimate channel matrix H and spatial interference corre-
lation matrix R. If R andΛΛΛN are nonsingular, the conditional
probability density function (pdf) is

Pr(ȳ|H, R) = 1
πN·Nr det

(
ΛΛΛN ⊗ R

)
× exp

{
− [ȳ − (IN ⊗H

)
x̄
]†

× (ΛΛΛN ⊗ R
)−1[

ȳ − (IN ⊗H
)

x̄
]}
.

(4)

3.1. ML solution

The ML estimate of the pair of matrices (H, R) is the value
of (H, R) that maximizes the conditional pdf in (4), which is
equivalent to maximizing ln Pr(ȳ|H, R).

Letting A and B denote m×m and n×n square matrices,
and using identities [19]

det(A⊗ B) = det(A)n det(B)m,

(A⊗ B)−1 = A−1 ⊗ B−1,
(5)

where A, B are nonsingular, it can be shown that maximizing
(4) is equivalent to minimizing

f (H, R) = ln det(R)

+
1
N

[
ȳ − (IN ⊗H

)
x̄
]†

× (ΛΛΛ−1
N ⊗ R−1)[ȳ − (IN ⊗H

)
x̄
]
.

(6)

Denoting the elements of ΛΛΛ−1
N as

ΛΛΛ−1
N =




α0,0 · · · α0,N−1

...
...

αN−1,0 · · · αN−1,N−1


 , (7)

we rewrite (6) as

f (H, R)

= ln det(R)

+
1
N

N−1∑
i=0

N−1∑
j=0

αi, j
(

yi −Hxi
)†

R−1(y j −Hx j
)

= ln det(R)

+ trace


R−1 1

N

N−1∑
i=0

N−1∑
j=0

αi, j
(

yi −Hxi
)(

y j −Hx j
)†.

(8)

To find the value of (H, R) that minimizes f (H, R) in (8),

we set ∂ f (H, R)/∂H = 0. Define the weighted sample corre-
lation matrices1 as

R̃yy = 1
N

N−1∑
i=0

N−1∑
j=0

αi, jyiy
†
j ,

R̃xy = 1
N

N−1∑
i=0

N−1∑
j=0

αi, jxiy
†
j ,

R̃xx = 1
N

N−1∑
i=0

N−1∑
j=0

αi, jxix
†
j .

(9)

Using the identities of matrix derivative [19], it can be shown
[20] that (8) is minimized by

Ĥ = R̃†xyR̃−1
xx . (10)

Setting ∂ f (Ĥ, R)/∂R = 0, it can also be shown that the esti-
mate of spatial interference correlation matrix is given by

R̂ = 1
N

N−1∑
i=0

N−1∑
j=0

αi, j
(

yi − Ĥxi
)(

y j − Ĥx j
)†

(11)

= R̃yy − ĤR̃xy. (12)

We remark that if R̃xy and R̃xx in (10) were known cross- and
auto-correlation matrices, the estimate for H would repre-
sent the Wiener solution.

3.2. Special case: temporally white interference

If an interference is temporally white, with loss of generality,
we may substituteΛΛΛN = IN into (9), (10), (11), and (12), and
obtain estimates

Ĥw = R†xyR−1
xx , (13)

R̂w = Ryy − ĤwRxy , (14)

where the subscript w indicates temporally white interfer-
ence, and the sample correlation matrices are

Ryy = 1
N

N−1∑
i=0

yiy
†
i , (15)

Rxy = 1
N

N−1∑
i=0

xiy
†
i , (16)

Rxx = 1
N

N−1∑
i=0

xix
†
i . (17)

Note that Ĥw in (13) is the same as the channel estimate used
in [15].

1To distinguish weighted sample correlation matrices from conventional
sample correlation matrices in Section 3.2, we denote the former by a tilde
and the latter without a tilde.
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3.3. Whitening filter interpretation

To obtain insight on the estimates in (10) and (12), we let the
received signal vectors during the training period undergo a
linear transformation where the transformed received signal
vectors are

[
y′0 · · · y′N−1

] = [y0 · · · yN−1
]
ΛΛΛ−1/2

N . (18)

At the output of the transformation, we have

y′i = Hx′i + n′i , i = 0, . . . ,N − 1, (19)

where the transformed training signal vectors and interfer-
ence vectors are[

x′0 · · · x′N−1

] = [x0 · · · xN−1
]
ΛΛΛ−1/2

N ,

[
n′0 · · ·n′N−1

] = [n0 · · ·nN−1
]
ΛΛΛ−1/2

N ,
(20)

respectively. Concatenating the transformed interference
vectors as n̄′ = [n

′T
0 · · ·n

′T
N−1]T , it can be shown that

n̄′ = (ΛΛΛ−1/2
N ⊗ INr

)
n̄, (21)

where n̄ = [nT
0 · · ·nT

N−1]T . Since the covariance matrix of n̄
is ΛΛΛN ⊗ R, the covariance matrix of n̄′ is

cov
(

n̄′
) = (ΛΛΛ−1/2

N ⊗ INr

)
cov

(
n̄
)(
ΛΛΛ−1/2

N ⊗ INr

)†
= (ΛΛΛ−1/2

N ⊗ INr

)(
ΛΛΛN ⊗ R

)(
ΛΛΛ−1/2

N ⊗ INr

)
= IN ⊗ R,

(22)

where we used (A ⊗ B)† = A† ⊗ B† and (A ⊗ B)(C ⊗ D) =
AC ⊗ BD [19]. We also used the fact that the temporal cor-
relation matrix ΛΛΛN is symmetric, as well as ΛΛΛ−1/2

N . From
(22), it is obvious that the transformed interference vectors
{n′0 · · ·n′N−1} are temporally white with spatial correlation
matrix R.

As a result, we can estimate H and R from the sam-
ple correlation matrices of transformed signal vectors as in
Section 3.2. The sample correlation matrix

Ry′ y′ = 1
N

N−1∑
i=0

y′i y
′†
i

= 1
N

[
y′0 · · · y′N−1

][
y′0 · · · y′N−1

]†
= 1

N

[
y0 · · · yN−1

]
ΛΛΛ−1/2

N ΛΛΛ−†/2N

[
y0 · · · yN−1

]†
= 1

N

[
y0 · · · yN−1

]
ΛΛΛ−1

N

[
y0 · · · yN−1

]† = R̃yy ,

(23)

which shows that the weighted sample correlation matrix of
{y0 · · · yN−1} is equivalent to the sample correlation matrix
of {y′0 · · · y′N−1}. Similarly, the weighted sample correlation
matrices R̃xy and R̃xx are equivalent to the sample correla-
tion matrices Rx′ y′ and Rx′x′ , respectively. Therefore, the esti-
mates in (10) and (12) can also be realized by first temporally

whitening the interference, and then forming the estimates
from the sample correlation matrices of the transformed sig-
nal vectors.

4. DATA DETECTION

We focus on ordered MMSE detection due to the better per-
formance of MMSE compared to ZF detection [21]. For re-
ceived signal vector yi = Hxi + ni, modifying the BLAST al-
gorithm in [16], the steps of ordered MMSE detection of xi

from yi with estimated channel and interference spatial cor-
relation matrices are as follows:

Step 1. Initialization: set k = 1, Hk = Ĥ, x̃k = xi, ỹk = yi.
Step 2. Calculate the estimation error covariance matrix Pk =

(INt+1−k + H†
k R̂−1Hk)−1. Find m = arg min j Pk( j, j),

where Pk( j, j) denotes the jth diagonal element of Pk.
Hence, the mth signal component of x̃k has the small-
est estimation error variance.

Step 3. Calculate the weighting matrix Ak = (INt+1−k +
H†

k R̂−1Hk)−1H†
k R̂−1. The mth element of x̃k is esti-

mated by x̂mk = Q(Ak(m, :)ỹk), where Ak(m, :) denotes
the mth row of matrix Ak, and Q(·) denotes the slicing
operation appropriate to the signal constellation.

Step 4. Assuming that the detected signal is correct, remove
the detected signal from the received signal ỹk+1 = ỹk−
x̂mk Hk(:,m), where Hk(:,m) denotes the mth column of
Hk.

Step 5. Hk+1 is obtained by eliminating the mth column of
matrix Hk and x̃k+1 is obtained by eliminating the mth
component of vector x̃k.

Step 6. If k < Nt , increment k and go to Step 2.

We refer to this scheme as one-vector-symbol detection, as we
detect xi using yi only.

When an interference is temporally colored, there may
exist a performance to be gained by taking the temporal
interference correlation into account. That is, we may use
yN+1, . . . , yM to detect xN+1, . . . , xM jointly where N is the
training length and M is the frame length. Due to the com-
plexity of using all the received signal vectors and for sim-
plicity of presentation, we consider a two-vector-symbol de-
tection in which (yi, yi+1) is used to detect (xi, xi+1) jointly.
The one-vector-symbol algorithm can be easily extended to
the two-vector-symbol version by writing

[
yi

yi+1

]
︸ ︷︷ ︸

y̌i

=
[

H 0

0 H

]
︸ ︷︷ ︸

Ȟ

[
xi

xi+1

]
︸ ︷︷ ︸

x̌i

+

[
ni

ni+1

]
︸ ︷︷ ︸

ňi

. (24)

With the estimated channel, an estimate of Ȟ, denoted as ˆ̌H,
can be obtained. Using the estimated spatial interference cor-
relation and the known temporal interference correlation, we
are able to estimate the covariance matrix of ňi, denoted as
ˆ̌R. Replacing xi, yi, Ĥ, and R̂ in the one-vector-symbol al-

gorithm by x̌i, y̌i,
ˆ̌H, and ˆ̌R, respectively, we obtain the two-

vector-symbol detection algorithm.
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5. APPLICATIONS

In this section, we apply the channel estimation in Section 3
and data detection in Section 4 to the case of a single-user
link with one dominant cochannel interferer operating at dif-
ferent data rates.

5.1. System model

Consider a desired user with one dominant cochannel inter-
ferer. The assumption of one cochannel interferer can ap-
ply to cellular TDMA or FDMA systems when sectoring is
used. For example, in 7-cell reuse systems, with 60 degree
sectors, the number of cochannel interfering cells would be
reduced to one [22]. We assume that the desired and inter-
fering users have Nt and L transmitting antennas, respec-
tively, and that there are Nr receiving antennas. Assuming
that the thermal noise is small relative to the interference,
we ignore the thermal noise in the problem formulation. An
investigation of this assumption in channels with noise ap-
pears in Section 5.4.3. We also assume that over the duration
of a transmitted frame, a randomly delayed replica of the in-
terfering signal is transmitted continuously, and that the in-
terference statistics do not change. This assumption may not
hold for asynchronous packet transmission systems. In a slow
flat fading environment, the vector signal at the receiving an-
tennas is

y(t) =
√

PsT

Nt
H

M−1∑
k=0

xkg̃(t − kT)

+

√
PITI

L
HI

∞∑
k=−∞

bkg̃I
(
t − kTI − τ

)
,

(25)

where M is the frame length, and H (Nr×Nt) and HI (Nr×L)
are the channel matrices of the desired and interfering users,
respectively. The channel matrices are also assumed fixed
over a frame and have independent realizations from frame
to frame. The data transmission rates of the desired and in-
terfering users are 1/T and 1/TI , respectively. The spectra of
transmit impulse responses g̃(t) and g̃I(t) are square root
raised cosines with parameters T and TI , respectively. The
same roll-off factor, β, is assumed for both g̃(t) and g̃I(t). The
data vectors of the desired and interfering users are xk (Nt×1)
and bk (L × 1), respectively. We assume that the data sym-
bols in xk’s and bk’s are mutually independent, zero mean,
and with unit variance. We denote Ps and PI as the transmit
powers of the desired and interfering users, respectively. The
delay of the interfering user relative to the desired user is τ,
assumed to lie in 0 ≤ τ < TI .

Passing y(t) in (25) through a filter matched to the trans-
mit impulse response of the desired user, g̃(t), the vector sig-
nal at the output of the matched filter is

yMF(t) =
√

PsT

Nt
H

M−1∑
k=0

xkg(t − kT)

+

√
PITI

L
HI

∞∑
k=−∞

bkgI
(
t − kTI − τ

)
,

(26)

where g(t) = g̃(t)∗ g̃(t), gI(t) = g̃I(t)∗ g̃(t), and ∗ denotes
convolution. As a result, g(t) has a raised cosine spectrum
and satisfies the Nyquist condition for zero intersymbol in-
terference.

Assuming perfect synchronization for the desired user, as
we sample the output of the matched filter (26) at time t =
jT , we obtain

y j =
√

PsT

Nt
Hx j +

√
PITI

L
HI

∞∑
k=−∞

bkgI
(
jT − kTI − τ

)
︸ ︷︷ ︸

n j

.

(27)

The interference vector n j is zero mean since the data vec-
tor of interferer bk is zero mean. Note that there is no inter-
symbol interference for the desired user. However, due to the
interferer’s delay and/or mismatch between the transmit and
receive impulse responses, intersymbol interference exists for
the interferer.

5.2. Interference statistics

The cross correlation between the interference vectors in (27)
at time jT and qT is

E
{

n jn†q
} = PITI

L
HI

· E



 ∞∑

k1=−∞
bk1gI

(
jT − k1TI − τ

)

×

 ∞∑

k2=−∞
b†k2

gI
(
qT − k2TI − τ

)

H†

I

= PITI

L
HIH†

I

·
∞∑

k=−∞

{
gI
(
jT − kTI − τ

)
gI
(
qT − kTI − τ

)}
,

(28)

where the last equality is due to the facts that E{bk1 b†k2
} = 0

for k1 �= k2 and E{bkb†k} = IL.
During a training period of N vector symbols, the co-

variance matrix of the concatenated interference vector n̄ =
[nT

0 · · ·nT
N−1]T has the form of (2), where

ΛΛΛN ( j, q) =
∞∑

k=−∞

{
gI
(
jT − kTI − τ

)
gI
(
qT − kTI − τ

)}
,

0 ≤ j, q ≤ N − 1,
(29)

R = PITI

L
HIH†

I . (30)

The Nr×Nr spatial correlation matrix R is determined by the
interferer’s channel matrix. The N ×N temporal correlation
matrix ΛΛΛN depends on parameters T and TI , delay τ, and
pulse gI(t); it can be calculated a priori if these parameters
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are known. The temporal correlation is due to intersymbol
interference in the sampled interfering signal. We remark
that for the case of multiple interferers with the same delay,
the covariance matrix of interference also has the form of
(2).

We study temporal interference correlation in the cases
where (1) the interferer has the same data rate as that of the
desired signal (T = TI) and (2) the data rate of the desired
user is an integer multiple of that of the interferer (TI = mT ,
m > 1).

5.2.1. Interferer at the same data rate
as the desired signal

With T = TI , gI(t) has a raised cosine spectrum and is given
by [23]

gI(t) = sinc
(
πt

T

)
cos(πβt/T)

1− 4β2t2/T2
. (31)

We note that ΛΛΛN ( j, q) depends on j − q. This indicates that
the sequence consisting of interference vectors is station-
ary. Hence, the temporal correlation matrix is a symmetric
Toeplitz. By appropriate truncation of the infinite series in
(29), we can numerically calculate the temporal correlation
matrix. For the case of β = 1, T = 1, and τ = 0.5, the ele-
ments of the temporal correlation matrix are

ΛΛΛN ( j, q) =




0.5 j = q,

0.25 | j − q| = 1

0 otherwise.

for 0 ≤ j, q ≤ N − 1, (32)

5.2.2. Interferer at a lower data rate than
the desired signal

It can be shown that gI(t) is given by

gI(t) = F −1
{√

Grc,TI ( f )
√
Grc,T( f )

}
, (33)

where F −1 denotes the inverse Fourier transform and
Grc,T( f ) is the raised cosine Fourier spectrum with param-
eter T and roll-off factor β. Unlike the case of the same data
rate interferer whereΛΛΛN ( j, q) depends on j−q, in the case of
lower data rate interferer, ΛΛΛN ( j, q) depends on the values of
j and q. This indicates that the sequence consisting of inter-
ference vectors is cyclostationary [23, 24]. With TI = mT , it
can be shown thatΛΛΛN ( j, q) is periodic with period m, that is,
ΛΛΛN ( j, q) = ΛΛΛN ( j+m, q+m). As a result, the temporal correla-
tion matrixΛΛΛN is symmetric, but not Toeplitz. Furthermore,
for N ≥ m, the number of nontrivial eigenvalues of ΛΛΛN is
	N/m
, where 	·
 rounds the argument to the nearest integer
towards infinity [25]. For the case of TI = 2T , T = 1, β = 1,
τ = 0.25, and training length N = 6, by numerical calcula-
tion of (29) with appropriate series truncation, the temporal

correlation matrix is

ΛΛΛ6 =




0.648 0.400 −0.048 −0.006 −0.010 −0.001

0.400 0.277 0.105 0.084 0.002 0.011

−0.048 0.105 0.648 0.400 −0.048 −0.006

−0.006 0.084 0.400 0.277 0.105 0.084

−0.010 0.002 −0.048 0.105 0.648 0.400

−0.001 0.011 −0.006 0.084 0.400 0.277



.

(34)

Note that ΛΛΛ6 in (34) is singular as the number of nontrivial
eigenvalues is 3.

5.3. Data detection without estimating channel
and interference

During a training period of N symbol vectors, instead of es-
timating the channel matrix and interference statistics, one
can alternatively employ a least squares (LS) estimate of ma-
trix M which minimizes the average estimation error

f2(M) = trace


 1
N

N−1∑
i=0

(
xi −Myi

)(
xi −Myi

)†. (35)

By setting ∂ f2(M)/∂M = 0, we obtain

M = RxyR−1
yy , (36)

where the sample correlation matrices Rxy and Ryy are de-
fined in (16) and (15), respectively. The transmitted signal
vector xi is detected as Q(Myi), where Q(·) is the slicing op-
eration appropriate to the signal constellation. We remark
that (36) is the well-known DMI algorithm [17], generalized
for multiple input signals. A significant loss in performance
is expected for this LS detector, since without estimates of
channel and spatial interference correlation matrices, itera-
tive MMSE detection cannot be performed.

5.4. Simulation results

Monte Carlo simulations are used to assess the benefits of
taking temporal and spatial interference correlation into ac-
count, for channel estimation and data detection in the case
of one interferer. Although temporal interference correlation
may be difficult to estimate in practice, we examine this as a
benchmark and determine the performance loss due to ig-
noring this correlation. We evaluate average symbol error
rates (SERs) in independent Rayleigh fading channels of rich
scattering, that is, the elements in channel matrices H and
HI are independent, identically distributed (i.i.d.) zero-mean
complex Gaussian with unit variance. We assume that the de-
sired user has 5 transmitting and 5 receiving antennas, and
the interfering user has 6 transmitting antennas.2 Both the
desired and interfering users employ uncoded quadrature
phase shift keying (QPSK) modulation. The training signal
vectors are columns of a fast Fourier transform (FFT) matrix

2For a nonsingular spatial interference correlation matrix, we set Nr ≤ L.
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[16] to guarantee orthogonal training sequences from differ-
ent transmitting antennas. We define SIR(dB) = 10 logPs/PI .
Without loss of generality, we set PI = 1 in the simulation.
The SERs of two cases are simulated: (1) interferer at the
same data rate as the desired signal and (2) the data rate of
the desired user is twice that of the interferer.

In Figures 1, 2, 3, and 4, with solid and dashed lines repre-
senting one- and two-vector-symbol data detection, respec-
tively, we plot average SERs for the following cases:

(a) perfectly known channel parameters and interference
statistics, with one-vector-symbol (curve 1) and two-
vector-symbol (curve 2) detection;

(b) channel and spatial interference correlation matrices
are estimated assuming known temporal interference
correlation, with one-vector-symbol (curve 3) and
two-vector-symbol (curve 4) detection;

(c) channel and spatial interference correlation matrices
are estimated assuming temporally white interference,
with one-vector-symbol detection (curve 5);

(d) only the channel matrix H is estimated assuming tem-
porally white interference; an identity spatial interfer-
ence correlation matrix is used in one-vector-symbol
data detection (curve 6);

(e) LS estimate of the transmitted signal vector without
ordered detection (Section 5.3) (curve 7).

We remark that cases (a) and (b) are benchmarks presented
for reference, while case (d) corresponds to the well-known
BLAST system in [4, 16].

5.4.1. Interferer at the same data rate
as the desired signal

We examine the case of T = 1, β = 1, and τ = 1/2, and the
nonsingular temporal interference correlation matrix shown
in (32). Figures 1 and 2 show the average SERs for training
lengths 2Nt and 4Nt , respectively. Comparing the LS detec-
tion (curve 7) with other methods, much lower SERs can be
achieved by using ordered MMSE detection as expected.

Comparing curves 5 and 6, we observe that for a training
length of 4Nt symbols, gains can be obtained by estimating
spatial interference correlation. However, shorter training
lengths such as 2Nt produce inaccurate estimates of spatial
interference correlation which in turn do not yield any ben-
efit over assuming spatially white interference. As expected,
we observe that the improvement by taking into account
estimated spatial correlation increases with longer training
lengths.

Examining curves 3 and 5 in Figure 2, we observe that
the improvement in taking temporal interference correla-
tion into account in channel estimation is not significant.
Moreover, this rate of improvement rapidly diminishes as
the training length increases. This can be explained by not-
ing that in estimating channel and spatial interference corre-
lation matrices for temporally colored interference, the re-
ceived signal vectors first undergo a transformation which
temporally whitens the interference vectors as discussed in
Section 3.3. Since the temporal correlation in (32) drops

quickly to zero after one time lag, the benefit in temporal
whitening of interference vectors is not significant, especially
for long training lengths.

By comparing curves 3 and 4 in Figure 2, there is a slight
improvement in using two-vector-symbol over one-vector-
symbol detection. This implies that not much gain can be
achieved by taking temporal interference correlation into ac-
count in data detection, owing to the low temporal corre-
lation. Due to better estimates of channel and interference
spatial correlation matrices obtained with a longer training
length, the performance gap between curves 3 and 4 should
increase as the training length increases.

By comparing curves 4 and 6 in Figure 2, we observe a
1.5 dB gain in SIR obtained by estimating spatial interference
correlation and taking explicit advantage of known tempo-
ral interference correlation in channel estimation and data
detection using a training length of 4Nt . About 1 dB of that
gain is due to the estimation of spatial interference correla-
tion, and the remaining 0.5 dB gain is due to exploiting tem-
poral interference correlation in channel estimation and data
detection.

5.4.2. Interferer at a lower data rate
than the desired signal

We examine the case of TI = 2T , T = 1, β = 1, τ = 0.25
and the temporal interference correlation matrix for training
length N = 6 shown in (34). Recall that the temporal corre-
lation matrix for the lower-data-rate-interferer case is singu-
lar. To avoid the singularity, the diagonal elements of ΛΛΛN are
increased by a small amount; hence, the temporal correla-
tion matrix used for channel estimation may be modified to
ΛΛΛN +δIN within the proposed framework. In our simulation,
we chose δ = 0.01.

The same set of average SER curves as in the same-data-
rate-interferer case are simulated. Figures 3 to 4 show the
SERs for different training lengths. As in the case of the same-
data-rate interferer, curve 7 illustrates the poor performance
without ordered detection. Curves 5 and 6 suggest that for
short training lengths it is better to estimate only the channel
matrix and assume spatially white interference in data detec-
tion; however, for moderately long training lengths, gains can
be obtained by estimating spatial interference correlation.

By examining curves 3 and 5 in Figure 4, we observe that
the improvement in taking temporal interference correlation
into account in channel estimation, although larger than that
in the same-data-rate-interferer case due to the high tempo-
ral correlation in the lower-data-rate-interferer case, is still
not that significant.

In contrast to the same-data-rate-interferer case, curves 3
and 4 in Figure 4 show that the improvement of two-vector-
symbol over one-vector-symbol detection is significant due
to the higher temporal interference correlation. This implies
that a significant gain can be achieved by taking the known
temporal interference correlation into account in data detec-
tion for the lower-data-rate-interferer case.

By comparing curves 4 and 6 in Figure 4, for the training
length 4Nt , there is a total of 4 dB gain in SIR by estimating
spatial interference correlation and taking advantage of the
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Figure 1: Average SER versus SIR with Nt = Nr = 5, L = 6, and
training length 2Nt under independent Rayleigh fading. Both the
desired and the interfering users are at the same data rate.
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Figure 2: Average SER versus SIR with Nt = Nr = 5, L = 6, and
training length 4Nt under independent Rayleigh fading. Both the
desired and the interfering users are at the same data rate.
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Figure 3: Average SER versus SIR with Nt = Nr = 5, L = 6, and
training length 2Nt under independent Rayleigh fading. The data
rate of the desired user is twice that of the interfering user.
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Figure 4: Average SER versus SIR with Nt = Nr = 5, L = 6, and
training length 4Nt under independent Rayleigh fading. The data
rate of the desired user is twice that of the interfering user.
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Figure 5: Average SER versus INR with Nt = Nr = 5, L = 6,
SIR=10 dB, and training length 4Nt under independent Rayleigh
fading. Both the desired and the interfering users are at the same
data rate.

known temporal interference correlation in channel estima-
tion and data detection. About 3.5 dB of the gain is due to
exploiting temporal interference correlation in channel esti-
mation and data detection.

5.4.3. Effect of model mismatch

With one interferer and a finite SNR, the interference-plus-
noise statistics can only be approximately modelled using a
Kronecker product. Here, we investigate when this approx-
imation breaks down. We model thermal noise as a zero-
mean circularly symmetric complex Gaussian vector with
covariance matrix σ2INr , that is, independent from antenna
to antenna, with noise power σ2 on each antenna. We de-
fine (interference-to-noise power ratio) INR = 10 logPI/σ2,
where PI = 1 is used in the simulations. For the case of an in-
terferer at the same data rate and using a training length 4Nt ,
we observe in curves 3 and 5 in Figure 5 that, at INRs below
17 dB, taking interference temporal correlation into account
appears not to be of benefit. Figure 6 shows the correspond-
ing comparison for the case of the lower-data-rate interferer.
In this case, temporal correlation is larger and the decou-
pled model of interference-plus-noise statistics breaks down
at INRs lower than 12 dB.

5.4.4. Effect of exploiting spatial
interference-plus-noise correlation

From the above results, temporal interference correlation,
even if known, may not result in a performance benefit at
lower INRs due to model mismatch. Therefore, we assess the
benefit of taking only the spatial correlation of interference-
plus-noise into account. As a reference, we compare the per-
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Figure 6: Average SER versus INR with Nt = Nr = 5, L = 6,
SIR=10 dB, and training length 4Nt under independent Rayleigh
fading. The data rate of the desired user is twice that of the inter-
fering user.

formance to the case of assuming the interference-plus-noise
to be spatially white. With total interference power fixed,
Figure 7 compares the average SER for one (solid lines) and
two (dashed lines) interferers. In the case of two interferers,
the interferers have equal power and random relative delays.
Both desired and interfering users employ a (5, 5) MIMO
link, a total-interference-to-noise ratio of 12 dB, and a train-
ing length of 4Nt . Both the desired and the interfering users
operate at the same data rate. Figure 7 shows that for one
interferer, there is 1.2 dB gain over a wide range of signal-to-
interference-plus-noise ratio (SINRs), by estimating the spa-
tial correlation of interference-plus-noise. For the case of two
equal-powered interferers, the corresponding gain in SINR is
negligible.

6. CONCLUSIONS

By modelling interference statistics as approximately tempo-
rally and spatially separable, we have investigated ML joint
estimation of channel parameters and spatial interference
correlation matrices. We have assessed the impact of tem-
poral and spatial interference correlation on channel estima-
tion and data detection. For training lengths of at least four
times the number of transmitting antennas, gains of around
1 dB are observed by estimating spatial interference correla-
tion. We determine that an additional 0.5 to 3.0 dB in perfor-
mance gain would result if the known temporal correlation
was exploited. For shorter training lengths, however, it is bet-
ter to estimate only the channel matrix and assume spatially
white interference in data detection. One source of tempo-
ral correlation occurs where a cochannel interferer operates
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Figure 7: The improvement of estimating spatial correlation of
interference-plus-noise in practical systems.

at data rate lower than that of the desired user. Exploiting
temporal interference correlation in channel estimation was
found not to be of benefit. However, if temporal correlation is
significant, as in case of lower-data-rate interference, signif-
icant performance gains by exploiting temporal interference
correlation in data detection are theoretically possible. The
minimum INR levels, where separable temporal and inter-
ference correlation statistics model was shown to break down
and provide no benefit, ranged from 12 or 17 dB, depending
on the level of temporal correlation. Of more practical sig-
nificance, it was shown that at a total INR of 12 dB, 1.2 dB
of performance gain can be obtained over a wide range of
SINRs by estimating spatial correlation only and neglecting
temporal correlation.
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