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Smart Antenna Performance for Correlated
Azimuth Spread and Rician K-Factor
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Abstract—The recently-proposed superset of statistical beam-
forming (BF) and maximal-ratio combining (MRC) known as
maximal-ratio eigencombining (MREC) promises to achieve near-
optimum performance and to reduce numerical complexity. Fur-
thermore, eigencombining can be exploited to greatly simplify the
performance analysis of diversity schemes for correlated fading.
This paper contributes a new MREC (BF, MRC) performance
analysis and evaluation for Rician fading with lognormally-
distributed K-factor, and Laplacian power azimuth spectrum
with lognormally-distributed azimuth spread (AS). First, an av-
erage error probability (AEP) expression is derived for MREC for
correlated Rician fading and perfectly known channel gains and
eigenstructure. This AEP expression is then employed to study
the effect on performance of the randomness of K and of the AS
- K correlation. We find that disregarding this randomness and
correlation may significantly distort performance indications.

Index Terms—Azimuth spread, Rician fading, K-factor, cor-
relation, eigencombining,

I. INTRODUCTION

Wireless communications standards (3GPP/2, WiMAX,
WiFi, etc.) specify smart antenna algorithms designed to take
advantage of array and diversity gains [1, Sections 5.2, 5.3]
[2] [3] [4]. However, inaccurate channel fading estimation and
inadequate received-power azimuth spread (AS) [5] degrade
the performance of conventional combining techniques such
as maximal-ratio combining (MRC) and maximum average
signal-to-noise ratio (SNR) beamforming, i.e., statistical beam-
forming (BF) [2] [3]. Fading type (e.g., Rayleigh, Rician) can
also affect performance very significantly [1] [6] [7].

BF combines the received signal vector with the domi-
nant eigenvector of the channel correlation matrix. Thus, BF
performance degrades with increasing AS due to combiner—
channel coherence loss. On the other hand, MRC combines
the received signal vector with the channel gain vector, which
is in practice estimated through computationally-intensive op-
erations. MRC performs best for uncorrelated channel gains,
i.e., for wide AS. However, in typical urban (TU) scenarios
the base sation ‘sees’ a Laplacian power azimuth spectrum
(PAS) with a predominantly small-to-moderate, lognormally-
distributed, AS that also fluctuates orders of magnitude slower
than the Doppler-shift-induced fading [5]. Therefore, BF and
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MRC may periodically underperform or may have oversized
numerical complexity [2] [3].

Maximal-ratio eigencombining (MREC) [2] consists of pro-
jecting the received signal vector onto dominant eigenvectors
of the channel gain correlation matrix — i.e., the Karhunen-
Loeve Transform (KLT) — followed by MRC. Therefore,
MREC is a superset of BF and MRC [3] [4] that has been
promoted as able to extract the available array and diversity
gains for lower complexity than MRC, and to simplify MRC
performance analysis [2] [3] [4].

Our previous MREC analyses focused on Rayleigh fading
[2] [3] [4]. However, many typical scenarios and environments
exhibit Rician fading (microcell, macrocell; urban, suburban;
outdoor, indoor; line-of-sight — LOS, NLOS) [8] [9] [10].
Furthermore, the effect of the Rician K-factor [1] [6, p.
21] [7] has been evaluated independently of the AS: for
instance, evaluating combiner performance for AS values or
for AS ranges while assuming Rayleigh fading (i.e., K = 0)
effectively discounts any AS — K relationship [2] [3] [4];
on the other hand, combiner performance studies for Rician
fading generally set K to typical values (e.g., averages from
measurements [9]) and antenna correlation (which, in fact, is
a function of the AS) to arbitrary values [6, Fig. 9.14, 316].

However, the actual K-factor is a lognormally-distributed
random variable [9] [10] not independent of AS. Simplistic
Rician fading modeling as superposition of a LOS wave
and diffuse omnidirectional arrivals reveals a certain inverse
relationship between AS and K [11, Eqn. (19)]. This ex-
pression does not apply for NLOS conditions [8] and for
typical PAS, i.e., Laplacian [5] and Gaussian [12]. A different
model will thus yield a different AS — K relationship (and
a different performance indication). Performance evaluations
less dependent on models are possible by considering instead
that AS and K are correlated random variables. Measurements
in actual channels [12] have revealed the following AS — K
correlation values: p = —0.6 for indoor office and residential
environments, p = —0.3 for TU microcells, p = —0.2 for TU
macrocells [12, Table 4-5, p. 47].

In this paper we first derive, based on our previous results
for Rayleigh fading [3], a new average error probability
(AEP) expression for MREC, MRC, and BF, that applies for
correlated Rician fading and perfectly known channel gains
and eigendecomposition. This expression is then used to study,
for the first time, to the best of our knowledge, the effect of K
randomness and of AS — K correlation on AEP performance
indications. We find that disregarding the randomness of K
can greatly overestimate BF, MRC, and MREC performance.
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On the other hand, disregarding the AS — K correlation can
significantly underestimate MRC and MREC performance.

Section II of this paper presents the transmitted signal,
channel fading, receiver noise, K -factor, PAS, and AS models.
Section III describes MREC and derives its AEP for Rician
fading and perfectly-known channel gains and eigenstructure.
Section IV shows numerical results for BF, MRC, and adaptive
MREC AEP performance.

II. SIGNAL, CHANNEL, AND NOISE MODELS
A. Received Signal Model

A mobile station transmits signal through a frequency-flat
Rician fading channel. At an L-element base-station antenna
array the received signal vector after demodulation, matched-
filtering, and symbol-rate sampling is [3]

y=+vEbh+i 1)

where b is the equiprobable transmitted symbol, and Es is
the energy transmitted per symbol. For the numerical results
shown later we assume an M-PSK transmitted signal. The
channel fading and receiver noise vectors, h and n, are
assumed to be mutually uncorrelated, circularly-symmetric,
complex-valued, random Gaussian vectors [1, p. 39], described
by h ~ Nc(hg,R;) and i ~ Nc(0, NoI). The distribution
of the channel gain vector is completely described by the
mean (i.e., the deterministic, constant, component), hy, and
the covariance matrix

A ~ ~ ~ ~\H
RB=E{ (h—h) (h-hi) } @)
Let us assume that the (real-valued and non-negative) eigen-
values are ordered as A\; > Ay > ... > A > 0. The

corresponding, orthonormal, eigenvectors are denoted as u,,
i =1: L. The eigendecomposition of R, is then:

L
R =UALUY =) Nuuf, ?3)

i=1
where A1, and Uy, are a diagonal and a unitary matrix formed
with the eigenvalues and eigenvectors of Rj;, respectively.
Hereafter, these matrices are assumed to be perfectly known.

B. Statistical Model for the K-Factor in Rician Fading

Several authors have estimated from channel measurements
the K-factor for the Rician distribution. Greenstein et al.
reported in [10] results of several measurement campaigns for
the downlink in four suburban areas under various conditions.
It was found that channel gain samples fit well the Rician
distribution [10, Fig. 1], and that the K-factor follows a
lognormal distribution [10, Fig. 6], and that the K-factor
median is a simple function of the season, antenna height,
and antenna beamwidth [10, Eqn. (15)]. For a typical suburban
macrocell scenario, Erceg ef al. had drawn similar conclusions
and proposed the following model for the K-factor (in dB),
for a BS — MS distance of 1 km [9, Table II]:

Kag = 7879 +853; o ~N(0,1). @)

C. PAS and AS Models

In TU scenarios, intended-signal power arrives with azimuth
angle dispersion, which is typically modeled using the Lapla-
cian power azimuth spectrum (PAS) [5]. Laplacian PAS is
parameterized by the mean angle of arrival (AoA), 6., and
by the AS, which is (approximately) the root second central
moment of the PAS [4, Eqn. (4.2), p. 136]. The correlation
between two antenna elements can then be computed with [4,
Eqn. (4.3), p. 136].

For the numerical results shown later the “TU-32’ scenario
described in [5, Table I] has been considered. Then, the
base-station AS, measured in degrees, is well modeled as a
lognormally-distributed random variable [5, Eqn. (9), Table
1I]:

AS = 100.47X+0.74;

x ~N(0,1). &)
ITII. MREC, MRC, AND BF
A. MREC for Perfectly Known Channel

We summarize below from [3, Section III.A.1] the steps of
maximal-ratio eigencombining (MREC) of order N =1 : L,
denoted hereafter as MREC y:

(1) The L x N matrix Uy = [uj ug ... uy] transforms the
signal vector from (1) into

y=+vVEsbh+n, 6)

where

y2UEy, n=ufn n=Ufa
This is the well-known Karhunen-Loeve Transform
(KLT). The elements of the N-dimensional vectors y
and h are hereafter referred to as eigenbranches and
eigengains, respectively. Our assumptions about the fad-
ing and noise imply that: 1) h ~ N (hg,Ay), where
hy 2 U& ﬁd; 2) the eigengains are independent; 3)
n-~ NC(O, NO IN).

(2) For perfectly known channel gains and eigenstructure,
the transformed signal vector is linearly combined, based
on the maximal-ratio combining criterion [6], with

WMREC = h. (8)

By definition, the post-KLT K-factors are the ratios of the
powers in the deterministic and the random components of
the eigengains, i.e.:

_ lhaa® _ |uf hyl?
A Ai

These eigengain K-factors depend on the angle between the
deterministic channel component and the channel eigenvectors
as well as on the corresponding eigenvalues (and thus on the
AS). The relation between K;, AS, and the direction of hy
will be investigated in future work.

K; ®
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B. MREC Analysis for Perfectly Known Channel

The following analysis is an extension to Rician fading
of the analysis for Rayleigh fading from [3]. However, we
consider only the perfectly-known channel case herein. The
case of estimated channel will be analyzed in future work.

1) Optimum Eigencombining — MREC: For the post-KLT
signal vector in (6) the optimum weight vector from (8) yields
the symbol-detection SNR

g X N
T= Vs Z|hi|2 = Z’)’z‘,
0 =1 i=1

i.e., the sum of the individual SNRs. The average of ~; is:

f,—; (Ihail® +X:) - an
The property in (10) indicates that this eigencombining method
maximizes the symbol-detection SNR. Therefore, it has been
referred to as MREC [3].

The eigenbranch SNRs from (10) are independent random
variables with non-central x? distributions described by prob-
ability density function [6, Eqn. (2.16), p. 21]

L (KitD) v
T ] 4K; (K;i+1) v
h\\\— T,
T

(Kz + 1) 6_[ ’
I;
and moment generating function (MGF) [6, Eqn. (2.17), p. 21]
exp
(Ki+1)—8].—‘i (Kz+1)—8].-‘z
Based on the SNR property (10), we can express the MREC
average error probability (AEP) using the method from [6,
Chapter 9], as follows. For MRECy and M-PSK transmitted

signals, the symbol error probability conditioned on - can be
written as [6, Eqn. 8.22]

(10)

r; =

p(y) =

M, (s) = B{e* ™} =

M-—1
1 T
== / exp{—v ‘(_]P‘ZK }dtﬁ, (12)

™ Jo sin® ¢

where gpsg = sin? m/M. Then, the AEP is [6]
M-1
1 T
Pon & E{Pn()} = / M, ( 9"5“¢) dé, (13)
0

where M, (s) is the MGF of +. Using (10) and the indepen-
dence of v;, i = 1: N, Eqn. (13) becomes

1 M1, N
Pe,N=;A HM% <_

i=1

gpsK
sin® ¢> d¢-

This equation and the expression shown above for M., (s)
yield the symbol-AEP expression for MRECy as
Mo1n N

KiﬁﬁLFi
Pe,N—_/ H

(K; + 1) (Ki+1)+fE§L r;
(Ki+1)+ 25 T

which depends on modulatlon constellation size, M, MREC

order, N, antenna correlation (i.e., also AS), and K -factor.

The derived AEP expression suits well our goal of evaluating

the effect of the AS — K correlation on MREC performance.

(14)

d¢ (15)

" reordering decreasingly the terms A; (1+ K;), i = 1 :

2) Relation to BF and MRC: For N = 1, MREC becomes
BF, and then (15) is the BF AEP expression. For N = L,
MREC is equivalent to MRC because the symbol-detection
SNRs are equal [4, Section 3.9]. Thus, (15) with N = L
describes MRC performance.

C. Optimum Order Selection for MREC

For Rayleigh fading, we previously adapted the MREC
order to AS using the bias-variance tradeoff criterion (BVTC)
[3, Eqn. (31)] and found that BVTC-based MREC can attain
MRC-like performance for a fraction of the MRC complexity
[2] [3]. These benefits are due to the fact that the BVTC
balances the loss incurred by removing the weakest (L — N)
intended-signal contributions against the residual-noise contri-
bution.

For Rician fading the BVTC expression from [3, Eqn. (31)]
becomes:

L
[ 3 (i) 30

i=N+1

min
N_

L
[E > AN (A+EK)+No- N] . (16)
i=N+1

The K-factor for the ith eigenbranch, i.e., K; defined in (9),
is determined by both the eigenvalue, \;, and by the angle
between the ith channel eigenvector, u;, and the deterministic
component hy. Therefore, BVTC for Rician fading requires
N,
before (16) is employed to compute the MREC order, N.

IV. NUMERICAL RESULTS

Our numerical experiments employed the following param-
eter settings: QPSK transmitted signal; uniform linear array
with L = 5 elements and normalized interelement distance
dn = 1, ie., physical distance equals half of the carrier
wavelength; mean angle of arrival (AOA) 6, = 0, which
corresponds to the direction perpendicular to the antenna array;
Laplacian PAS with lognormally-distributed AS described
by (5); lognormally-distributed K-factor described by (4),
unless stated otherwise; the channel gains have unit variance
(so that the bit-SNR is given by 1, = E/No).

Our numerical experiments employed the following proce-
dure: 1) a batch of 10,000 independent AS samples from the
lognormal distribution from (5) was generated and stored; its
mean and standard deviation are 9.67° and 12.8°, respectively,
and Prob(AS < 20°) = 0.84; a commensurate batch of K-
factor samples was also generated, using (4), but was only
employed in some of the simulations; when necessary, AS —
K correlation was introduced; 2) for 4, values shown on the
abscissa in the figures described subsequently, the AEP was
computed using (15) for each stored AS value or AS-K pair;
3) the mean AEP was computed by averaging over the AS
samples or the (AS, K) pairs of samples.

Fig. 1 shows the mean AEP for SISO (single-input, single-
output), BE, BVTC-based adaptive MREC, and MRC, for
Rayleigh fading, i.e., for K = 0. Note that BVTC MREC
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Fig. 1. Average (over noise, fading, and AS) error probability vs. bit-SNR,
for SISO, BF, BVTC MREC, and MRC, for perfectly known Rayleigh fading
channel gains.

can attain near-MRC performance. Our previous numerical
complexity comparisons between MRC and BVTC MREC
for Rayleigh fading and estimated channel have indicated that
BVTC MREC can also yield significant numerical complexity
savings compared to MRC [2] [3].

For Rician fading, the direction of the deterministic com-
ponent of the channel gain vector, hy, has not yet considered
statistically, to the best of our knowledge. Nevertheless, it
makes intuitive sense that this component should correspond
to the mean AOA [12, Section 3.6, p. 35]. So, we set
the deterministic component of the channel gain vector as
proportional with the array response for a wave arriving from
f.=0,ie,hgoc[11... 17

Now, for the same AS batch as above, we consider Rician
fading with K = 8.53 dB, i.e., the mean of the distribution
from (4). Then, Fig. 2 reveals that the deterministic component
of the channel gain improves very significantly the perfor-
mance for all combiners (compared to the Rayleigh fading
results from Fig. 1). SISO performance improves significantly,
due to steeper high-SNR slope caused by the high K value. BF
yields significant array gain because its weight vector, which is
proportional to uy, lines up with hy. For the diversity schemes
(BVTC MREC and MRC) the above figures also reveal a
tremendous array gain for Rician vs. Rayleigh fading (but
similar AEP slopes).

Fig. 3 shows the BF, MRC and MREC mean-AEP perfor-
mance for random K-factor with the distribution from (4)
but uncorrelated with the AS. Comparing this figure with
Figs. 1 and 2 indicates that Rician fading with random and
uncorrelated AS and K yields better performance than for
Rayleigh fading, and far worse performance than for Rice fad-
ing with fixed K = 8.53 dB. Clearly, our assumptions about
the statistics of K have a significant impact on performance
indications.

Rice, K = 8.53 dB

Mean AEP
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Fig. 2. Average (over noise, fading, and AS) error probability vs. bit-SNR,
for SISO, BF, BVTC MREC, and MRC, for perfectly known Rician fading
channel gains with K = 8.53 dB.
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Fig. 3. Average (over noise, fading, AS and K) error probability vs. bit-

SNR, for BF, BVTC MREC, and MRC, for perfectly known Rician fading
channel gains, for random and uncorrelated AS and K-factor.

Fig. 4 shows mean-AEP performance for correlated AS and
K with correlation p = —0.6 (i.e., the upper limit of values
measured in [12]). SISO and BF performance does not change
significantly. On the other hand, Figs. 4 and 3 suggest that,
by discounting the AS — K correlation, the performance of
diversity schemes will appear poorer.

Our observations on the previous figures are confirmed
in Fig. 5. The mean AEP is shown for SISO, BF, BVTC
MREC (MRC performs negligibly better than BVTC MREC)
for Rayleigh fading as well as for Rician fading, for both
fixed K as well as for random K, for p = 0, —0.3, —0.6, —1.
Notice first that BVTC MREC can indeed take advantage of
the diversity gain and thus greatly outperforms BE. Then, as-
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Fig. 4. Average (over noise, fading, AS and K) error probability vs. bit-SNR,
for SISO, BF, BVTC MREC, and MRC, for perfectly known Rician fading
channel gains, for random and correlated AS and K-factor, with p = —0.6.
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Fig. 5. Average (over noise, fading, AS and, unless otherwise stated, over K)
error probability vs. bit-SNR, for SISO, BF, and BVTC MREC, for perfectly
known channel gains with Rayleigh and Rician fading.

suming Rayligh fading may yield significantly underestimated
performance indications compared to Rician fading for random
K. Furthermore, Rician fading with K fixed to ‘typical’ values
may yield significantly overestimated performance indications.
Finally, indicated performance improves with increasing AS —
K correlation magnitude. The reason is that the increasing
inverse correlation means that there will be fewer (AS, K)
sample pairs for which both AS and K are have low values.

V. SUMMARY AND CONCLUSIONS

We have shown a new analysis of maximal-ratio eigencom-
bining (MREC) that applies for SISO, statistical beamform-
ing (BF), maximal-ratio combining (MRC), correlated Rice
fading, for perfectly-known channel gains and eigenstructure.

We have used the derived average error probability (AEP)
expression to compare SISO, BF, MRC, and MREC perfor-
mance for correlated Rice fading and perfectly-known channel.
Adaptive MREC is shown capable to approach MRC-like
performance. Future work will evaluate also the complexity
savings of MREC vs. MRC for Rician fading and estimated
channel. We have also looked at the effect of the correlation
between the azimuth spread (AS) and the Rician K-factor on
the performance displayed by SISO, BF, MRC, and MREC.
For random AS, setting K # 0 may produce overly-optimistic
results for all combiners. On the other hand, for AS — K
correlation values recently reported based on measurements,
e.g., p = [—0.6,—0.3], MREC and MRC display 1 — 3 dB
better performance at 2 - 10~ mean-AEP compared to p = 0
(i.e., the value typically considered in previous assessments).
Future work will attempt to evaluate the effect of the direc-
tion of the deterministic channel component on performance,
and will assess OFDM performance for realistic correlation
between coherence bandwidth, AS, and K -factor.
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