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Maximal-ratio eigen-combining (MREC) for wireless communications channels, also known as eigen-beamforming for receivers equipped with antenna
arrays, integrates conventional maximum average signal-to-noise-ratio beamforming (Max-ASNR BF) and maximal-ratio combining (MRC) to provide
both high average SNR in high fading correlation as well as diversity in low fading correlation. Previous studies of MREC were based on simulation
or limited analysis and suggested that MREC can outperformMax-ASNR BF and MRC in terms of average error probability (AEP). A comprehensive
analysis of MREC is provided for BPSK signals and Rayleigh fading, including computable AEP and outage probability (OP) expressions for perfectly
known, correlated channel gains. Particular cases of these expressions apply to Max-ASNR BF and MRC. For imperfectly known channels the analysis
yields a new and general AEP expression forMREC, which is specialized to estimation based on pilot-symbol-aidedmodulation(PSAM) and interpolation.
In particular, this AEP expression applies to Max-ASNR BF and, for PSAM and data-independent interpolation lters, to MRC. Numerical results for
antenna arrays receiving signals with angle-of-arrival dispersion and imperfectly known channel gains conrm the potential advantage of MREC over
Max-ASNR BF and MRC.

La combinaison propre à rapport maximal (CPRM) pour des canaux de communication sans l, également connue sous le nom de formation de faisceau
propre pour des récepteurs équipés de réseaux d’antennes, intègre les méthodes conventionnelles de formation de faisceau maximisant le rapport moyen
signal-à-bruit (FF Max-RMSB) et de combinaison à rapport maximal (CRM) et fournit à la fois de RMSB élevé en condition d’atténuation fortement
corrélée et de la diversité en condition de basse corrélation de l’atténuation. Les études précédentes de la CPRM ont été basées sur la simulation ou sur
une analyse limitée et ont suggérée que la CPRM puisse surpasser la FF Max-RMSB et la CRM en termes de probabilité moyenne d’erreur (PME). Une
analyse complète de CPRM est donnée ici pour des signauxMP2E (modulationde phase à deux états) et d’atténuationRayleigh, y compris des expressions
calculables pour la PME et pour la probabilité de panne dans le cas de canaux parfaitement connus à gains corrélés. Pour des canaux imparfaitement
connus, l’analyse apporte une expression nouvelle et générale de la PME pour la CPRM, qui est spécialisée à estimation assistée par modulation avec
symbole pilote (MSP) et interpolation. Particulièrement, cette expression de la PME s’applique à la FF Max-RMSB et, dans le cas de MSP et de ltres
d’interpolation indépendantes des données, à la CRM. Les résultats numériques pour des réseaux d’antennes recevant de signaux avec une dispersion
d’angles d’arrivée et des gains de canaux imparfaitement connus conrment l’avantage potentiel de la CPRM par rapport à la FF Max-RMSB et à la CRM.

Keywords: beamforming, BPSK modulation, diversity, imperfectly known correlated channel gains, MRC, Rayleigh fading

I. Introduction

It is widely acknowledged that, for a perfectly known channel,
maximal-ratio combining (MRC) [1] yields the lowest average er-
ror probability (AEP) in a diversity system if the (complex) channel
gains are uncorrelated [1]–[5]. On the other hand, for antenna arrays
with closely spaced elements, maximum average signal-to-noise-ratio
beamforming [6] (Max-ASNR BF) yields the lowest AEP for coher-
ent (completely correlated) channel gains [5], [7]. Since in an actual
scenario the channel gains are not perfectly known and may never
be completely uncorrelated or correlated, the principles of these ap-
proaches were recently integrated to create the more practical eigen-
beamforming approach [5], denoted herein as maximal-ratio eigen-
combining (MREC).

MREC consists of two steps: rst, an appropriate number of domi-
nant eigenvectors of the channel-vector correlation matrix are selected
to form the Karhunen-Loève transform (KLT) [8], which is applied
to the received signal vector [9]; then, MRC is applied to the result-
ing vector. Max-ASNR BF is clearly a special case of MREC which
employs only the eigenvector corresponding to the largest eigen-
value [7], [10]. For a perfectly known channel, MRC of the received
signal vector and MREC employing all eigenvectors (denoted fur-
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ther as full MREC) are equivalent [11], so that MRC may be viewed
as a particular case of MREC. Simulation results [7], [10], [12]–[13]
and limited analytical results [14] have suggested that MREC outper-
forms Max-ASNR BF when the channel gains are only partially corre-
lated [7], [10], [12], and even MRC [12]–[14] for imperfectly known,
correlated channel gains.

A comprehensive performance evaluation/comparison of MREC,
Max-ASNR BF and MRC would require AEP and outage probabil-
ity (OP) expressions for correlated channel gains that may have un-
equal variances and may be imperfectly known. The characteristic
and moment generating functions (mgfs) of the output SNR or sym-
bol detection variable were previously used to obtain performance
measures (AEP, OP) for MRC, assuming perfectly known channel
gains [2], [15]–[19] or estimated channel gains [20]–[21], and for
MREC specically for maximum-likelihood channel estimation [14].
However, previous analyses of MRC and MREC omitted or specied
incompletely the AEP and OP in the case when some of the eigenval-
ues of the correlation matrix for the channel vector are equal. Since
this situation may occur for signals received at antenna arrays [22] for
various values of the angle-of-arrival (AOA) spread [23]–[24], it will
be dealt with herein.

In this paper we analyze MREC for BPSK-modulated signals and
wireless channel gains that undergo Rayleigh fading. In Section II,
for perfectly known correlated channel gains, we examine MREC and
its relationship with MRC and Max-ASNR BF, and we develop gen-
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eral AEP and OP expressions using the moment generating function
of the instantaneous post-combining SNR. In particular, these expres-
sions apply to MRC and Max-ASNR BF. In Section III, for imper-
fectly known correlated channel gains, we derive a novel and gen-
eral AEP expression for MREC, based on the mgf of the symbol
decision variable after combining. Channel estimation methods em-
ploying pilot-symbol-aided modulation (PSAM) and interpolation are
discussed, and MRC and full MREC are found to be equivalent for
data-independent interpolation. Numerical results drawn from analy-
sis are shown in Section IV to support the claim that MREC may
outperform both Max-ASNR BF and MRC when applied to signals
received with angle-of-arrival dispersion at antenna arrays, for imper-
fectly known channels.

II. MREC with perfect channel knowledge

A. Signal model
Consider that copies of a BPSK signal affected by Rayleigh fading
and zero-mean additive white Gaussian noise (AWGN) are available
for processing at the receiver. After demodulation, matched ltering
and symbol-rate sampling, the complex-valued received signal vector
can be written as

(1)

where is the energy transmitted per symbol, is the
equiprobable binary random symbol, and and are the complex
zero-mean Gaussian channel and noise vectors, respectively, with

and . We denote the elements of , i.e.,
the channel gains, as branches, and we assume them to be perfectly
known throughout Section II.

The channel-vector correlation matrix is Hermi-
tian, i.e., , and therefore has real non-negative eigenvalues

, and a complete set of orthonormal eigen-
vectors, , . Then, , where

diag is a diagonal matrix and is
a unitary matrix, i.e., . Throughout this work
we assume that and are perfectly known.

B. MRC, Max-ASNR BF and MREC principles
Maximum average signal-to-noise-ratio beamforming [6] maximizes
the average (over fading and noise) output SNR by combining the
received signal with a vector proportional to the eigenvector of
corresponding to its largest eigenvalue, i.e., . Maximal-ratio com-
bining [1]–[3], [15]–[16], [25] maximizes the instantaneous (averaging
over noise only) output SNR by combining the received signal vec-
tor with

(2)

Maximal-ratio eigen-combining has two steps:

1. First, for an appropriately selected order [9], the KLT
matrix , with and (for
) , is applied in (1), to obtain a transformed signal
vector

(3)

with . The elements ,
, of are denoted as eigen-branches [5].

2. Then, MRC applied to the transformed signal vector from (3)
leads to eigen-beamforming [5], denoted herein as maximal-
ratio eigen-combining. The corresponding combiner which max-
imizes the instantaneous output SNR for the signal in (3) is

(4)

It can be shown that the eigen-branches are mutually uncorrelated
for any branch distribution [8], and so they are mutually independent,
Gaussian random variables with variances for our as-
sumption of Rayleigh fading branches [11].

MRC of the original signal vector (denoted simply as MRC) is
equivalent to MRC of the transformed signal vector when
(denoted as full MREC) [11]. Therefore, if the original branches
are correlated, performance measures for MRC can be derived sim-
ply, based on the equivalent full MREC for the independent eigen-
branches [11]. On the other hand, MREC of order is clearly
Max-ASNR BF [7], [10].

Although MREC may look similar to hybrid selection combin-
ing/MRC (HSC/MRC) [15], [26]–[27], the two are actually signi-
cantly different. HSC/MRC was devised to reduce MRC complexity,
and both are mainly targeted to scenarios with low branch correla-
tions. MREC was devised as a better-performing but more-complex
replacement of Max-ASNR BF for scenarios with only partially corre-
lated branches [5], [7], [10]. Also, MREC was proposed as a better-
performing and less-complex alternative to MRC in scenarios with
partial correlation of the branches, when they may be poorly esti-
mated [5], [12]–[14]. In HSC/MRC the brancheswith the strongest in-
stantaneous SNR are processed, while in MREC the eigen-branches
with the strongest average SNR are processed. Thus, for HSC/MRC
the SNRs of all brancheshave to be estimated in the short term (shorter
than the channel coherence time), while for MREC estimates of long-
term (averaging over fading) SNRs are required.

C. MREC performance analysis for perfectly known channel
Given the MREC order , let be the instantaneous SNR in

, and its probability density function (pdf). Then, the
average error probability for MREC is [15], [25]

(5)

where is the error probability conditioned on the SNR. For
BPSK, (5) leads to [15], [18]

(6)

where is the moment generating function of .

The outage probability can be written as [15], [17], [19]

(7)

where is the SNR threshold. The OP can also be found using
since is its inverse Laplace transform.

The instantaneous SNR for the -th eigen-branch is ,
with average and exponential pdf [1], [15]

for (8)

so that the mgf of is

(9)

For the combiner in (4) the total instantaneous SNR is maximized,
i.e., [1], [3].

In general, some eigenvalues of may coincide [22]. Therefore,
let denote the distinct eigenval-
ues, with algebraic multiplicities , respectively, where
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. Then, because , , are independent, the
mgf of is

(10)

where , , are the distinct average SNRs
for the eigen-branches. Then, for BPSK and Rayleigh fading branches
which may be correlated and may have distinct average SNRs, the
AEP expression for MREC can be determined by substituting (10)
into (6) as

(11)

This formula can be used to nd the AEP for Max-ASNR BF as

and to nd the AEP for MRC for perfectly known branches which can
be correlated, with unequal variances. Based on these formulas it can
be shown that uncorrelated branches with equal variance minimize the
AEP for MRC, while coherent branchesmaximize it. The opposite can
be shown for Max-ASNR BF.

When the symbol SNR is large, the AEP for MREC
becomes

(12)

showing a diversity order equal to the number of combined eigen-
branches, which is as expected, since they are independent.

Applying (11) forMRC of independent and identically distributed
(i.i.d.) branches, one can show that, given the total received intended
energy, tr , as increases, the MRC AEP approaches

tr (13)

with [15,
Eqs. (4.1)–(4.2)]. Note that the right-hand side of (13) is sim-
ply the error probability for a BPSK signal with symbol SNR
equal to tr , transmitted through a nonfading channel with
AWGN [25, Eq. (5.2-4)]. A similar conclusion is reachedusing another
approach in [28, Eq. (17)]. Thus, an innite number of i.i.d. diversity
branches would make a Rayleigh fading single-input multiple-output
channel equivalent to a nonfading single-input single-output channel
with AWGN.

Performing numerical integration on (11) yields the AEP for any
particular situation, for any values of the eigen-branch variances, i.e.,
the eigenvalues , . The closed-form AEP expressions
shown next do not require numerical integration, but each of them
yields accurate results only when the assumed relationships among
eigen-branch variances are valid.

1. Equal-variance eigen-branches
The AEP and OP expressions shown next form the building blocks for
the other cases. For equal-variance eigen-branches, ,
and reduce (10) to

(14)

The inverse Laplace transform of (14) is the pdf of , and is given
by [25, Eq. (14.4-13)]

(15)

so that, with the notation , the AEP is given by [25,
Eq. (14.4-15)]

(16)

From (7) and (15), the OP is

(17)

where is the incomplete gamma func-
tion [29, Eq. (8.350-1)].

Interestingly, it can be shown that if all eigen-branches have equal
variance they actually are the original branches.

2. Some eigen-branches have equal variance
One can write the partial fraction expansion of the mgf in (10)
as [29, 2.102, pp. 56–57]

(18)

where ,

and . Based on [30], , ,
, can be expressed in closed form as

(19)

where stands for the set of integers satisfying
and

, and .

If (18) is substituted into (6), a canonical form of the AEP for
MREC is

(20)

where

(21)

is given by (16), by replacing with , and with .

The inverse Laplace transform of the mgf in (18) results in the pdf
of ,

(22)
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which, substituted into (7), yields a canonical form of MREC OP as

(23)

In [19] a similar approach based on the characteristic function of
yielded canonical forms of MRC AEP and OP for MPSK modula-

tion and Nakagami- fading, but these were incompletely specied.
The above results can easily be extended to these modulation formats
and fading distributions to yield completely specied AEP and OP
expressions.

3. All eigen-branches have distinct variances
In this case and , , so that (18) and (19)
yield [16, Eq. (10-59)]

(24)

where

(25)

Then, from (24), using (14) and (16) for , we obtain

(26)

which is the MRC AEP formula [25, Eq. (14.5-28)] written for the
independent eigen-branches.

The pdf from (22) becomes [16, Eq. (10-60)]

(27)

which corresponds to [25, Eq. (14.5-26)]. Then, the OP is

(28)

The AEP and OP formulas for MREC shown above for a perfectly
known channel are completely specied, cover all scenarios and apply
to Max-ASNR BF for and to MRC for .

III. MREC with imperfect channel knowledge

For BPSK and Rayleigh fading, we now analyze MREC when the
eigen-branches are imperfectly known. The AEP expressions we de-
rive are important since (a) they apply to Max-ASNR BF for
regardless of the estimation technique, and to MRC for for
certain estimation methods; and (b) their numerical implementation
shows that in practice MREC with may yield improved
symbol detection performance compared to Max-ASNR BF andMRC
for channel gains which are partially correlated.

For an imperfectly known channel, the instantaneous output SNR
alone is insufcient for nding the MRC AEP for BPSK modulation,
as noted in [31, p. 55]. Therefore, for MREC we consider instead the
decision variable for symbol detection [14], [20]–[21],

(29)

where stands for the real part of a complex number,
is the eigen-branch estimate, stands for the complex conjugate of
, is the -th element of the transformed signal

vector from (3), and .

We make the following assumptions: (a) the estimate of the
eigen-branch is calculated from temporal samples of , so that
and are independent for ; (b) is zero-mean; (c) and are
jointly Gaussian; and (d) the correlation coefcient of and ,

(30)

is real-valued [25, Appendix C, Section C.3]. In Section III.B we will
describe estimation approacheswhich satisfy these assumptions so that
the following analysis applies.

A. MREC performance analysis for imperfectly known channel
Herein, we derive AEP expressions based on the following approach:

1. For symbol , the mgf of , , is com-
puted.

2. Since are independent, , the mgf of is determined
as , based on (29).

3. A partial fraction expansion of may then be necessary
before its inverse Laplace transform is taken to produce the pdf
of , .

4. The AEP is calculated as .

As in Section II.C, we consider separately three particular situations.

1. Some eigen-branches have equal variance
Following steps 1 and 2 of the procedure outlined above, and assuming
that some of the eigen-branches may have identical parameters, we
derive the mgf of as

(31)

where and

(32)

are both real and positive. The mgf in (31) is rewritten as

(33)

where , , for ,
and , for . Using the same
approach as in Section II.C.2, we obtain

(34)

with

(35)



SIRITEANU / BLOSTEIN: MAXIMAL-RATIO EIGEN-COMBINING: A PERFORMANCE ANALYSIS 19

where stands for the set of integers satisfying
and

, and .

The pdf of can be obtained as the inverse Laplace transform
of (34),

(36)

where for , and for . Then,

(37)

This novel formula is applicable for arbitrary correlations between the
original branches and for any estimation method which satises the as-
sumptions made earlier for the distribution of the eigen-branches and
their correspondingestimates. MRECAEPplots obtained by specializ-
ing the above formula to estimation methods described in Section III.B
will be discussed in Section IV.

2. Equal-variance eigen-branches
In this case we drop the index because ( ), and
manipulate (37) using (35) to obtain

(38)

This equation can be shown to coincide with [20, Eq. (59)] writ-
ten for the independent eigen-branches. For perfectly known eigen-
branches we have , and (38) reduces to the well-known re-
sult [25, Eq. (14.4-15)] written for the independent eigen-branches.

3. All eigen-brancheshave distinct variances
In this case, and , , so that (37) and (35)
yield

(39)

where

(40)

From (39) and (40) one can obtain the MREC AEP expression
[14, Eq. (16)] which was derived specically for unequal eigen-branch
variances (eigenvalues) and for maximum-likelihood (ML) estimation.
Unlike (39), the novel AEP expression in (37) can be applied in any
correlation scenario, as will be illustrated in Section IV.

Note that for the AEP expressions derived above hold for
Max-ASNR BF, while for they may hold for MRC, as claimed
below.

PROPOSITION: For estimated branches and eigen-branches, MRC
is equivalent to full MREC if and only if

(41)

where denotes an estimator. The proof follows by imposing equality
between the combiners’ outputs for MRC and MREC.

Table 1
Interpolation lters

SINC sinc

MMSE

Table 2
Elements of and

Clearly, if the original branches are uncorrelated, then in
(41), and the above AEP expressions describe MRC for independent
branches with unequal or equal variances for any estimation method.
The case of correlated branches is discussed in the following section.

B. Estimation using PSAM and interpolation
In pilot-symbol-aided modulation the transmitter periodically inserts
pilot symbols into the data symbol stream. The receiver then estimates
the channel gain by interpolating the pilot samples acquired across
frames [32].

The notation is used to denote temporal indexing, where
is the frame index, t = 0 corresponds to the frame in

which estimation takes place, frames are used for
interpolation, and is the symbol index within the
frame, where corresponds to the pilot symbol and is the
frame length. For MREC, the estimate of the -th eigen-branch at the
-th data symbol position in the current frame can be written based

on [32] as

(42)

where contains the interpolation coefcients and is denoted as
the PSAM interpolation lter, and is a vector formed with the pilot
signal samples:

(43)

where is the pilot symbol and .

The interpolation lters can be classied as

1. data-independent, e.g., the lter with brick-wall-type frequency
response, which is optimum in the absence of noise; we will re-
fer to this lter, with impulse response tapered by a raised-cosine
window [33], as the SINC lter, and the corresponding estima-
tion approach as SINC PSAM;

2. data-dependent, e.g., the Wiener lter, which is minimum mean-
squared error (MMSE) optimum in the presence of noise, but
requires the second-order statistics of the received signals [32];
this lter is referred to as the MMSE lter, and the corresponding
estimation approach as MMSE PSAM.

Table 1 species the SINC [33] and MMSE [32] interpolation lters,
where sinc and is the roll-off factor ( for the
numerical results shown later); the elements of matrix
and of vector are expressed for Jakes’
model of temporal correlation [3] in Table 2, with representing
the zeroth-order Bessel function of the rst kind, and the normal-
ized maximum Doppler rate.
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Figure 1: The eigenvalues , , of the channel-vector correlation matrix
, and the fading correlation coefcient at any two adjacent antenna elements vs. the

maximum AOA dispersion, , for uniformly distributed AOA.

Table 3
Correlations required for in (30)

Based on (42) and (43), the correlations required to compute
from (30) and the MREC AEPs from Section III.A were determined
and are shown in Table 3. Notice that the AEP will depend on the
symbol position in the frame [32].

For correlated branches and data-independent interpolation lters
(such as ML [13, Eq. (9)] or SINC), straightforward calculations can
show that (41) is satised such that full MREC is equivalent to MRC,
so that, for , the AEP expressionsderived in Section III.A apply
to MRC. For (data-dependent) MMSE interpolation we found through
slightly more complicated calculations that (41) is not satised, so that
full MREC is not equivalent to MRC in this case.

IV. Numerical results

In this section, we consider that the vector in (1) is formed with the
signals received at elements of a uniform linear array (ULA). The
normalized inter-element distance is dened as , where is
the physical inter-element distance and is the carrier wavelength.We
assume that the transmitted signal may undergo scattering during prop-
agation and reaches the antenna array with an angle of arrival which
has uniform distribution [23, Eq. (8)] in the interval ,
where is the central AOA measured with respect to antenna broad-
side, and is the maximum AOA dispersion. Unless stated otherwise,
the following results are for (a common choice for beamform-
ing antennas [6]), , and .

The eigenvalues of the channel-vector correlation matrix and the
fading correlation coefcient for any two adjacent antenna elements
can be calculated using [23, Eqs. (A-19)–(A-20)], and are plotted ver-
sus in Fig. 1. Notice that for small the received signals are highly
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Figure 2: MREC AEP vs. , for SINC PSAM channel estimation; the AEP computed
with (37) is plotted with solid lines, and the AEP computed with (39) is plotted with
dashed/dotted lines.
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Figure 3: MRC and MREC BER vs. , obtained by simulation, for SINC PSAM channel
estimation.

correlated and the intended-signal energy, i.e., tr ,
is concentrated in the rst few eigenvalues. As increases, the cor-
relation decreases and the energy is spread more uniformly over the
eigen-branches. Notice also that some eigenvalues may be equal for
certain values, which suggests that the new AEP and OP expres-
sions derived in previous sections would be required.

We present numerical results for Rayleigh fading with maximum
normalized Doppler rate , and eigen-branches estimated
using PSAM and interpolation with and (
) [32]. Note that all shown error probabilities result from averaging
over a frame of symbols.

Fig. 2 shows theMRECAEP versus for SINC PSAM and symbol
SNR dB. The solid lines are obtained by computing AEP
using (37), i.e., by allowing some of the poles of the mgf in (34) to
be equal, while the dashed/dotted lines are obtained by computing the
AEP using (39), i.e., assuming that all the poles of the mgf in (34) are
distinct. Clearly, when some of the eigenvalues are equal, (39) does
not provide useful results. For instance, the plot obtained from (39)
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Figure 5: MREC AEP obtained with (37) vs. , for MMSE PSAM channel estimation.

for full MREC is discontinuous because the assumption of unequal
eigenvalues leading to (39) is violated at many values of , as seen
in Fig. 1. Notice that as decreases, the plots obtained from (39)
are less affected by this problem, which is as expected, considering
Fig. 1. Nevertheless, the AEP curves obtained using (37) and shown in
Fig. 2 closely match the bit error rate (BER) simulation results shown
in Fig. 3, for any . Thus, (37) can be employed to evaluate MREC in
any scenario, unlike previously derived AEP expressions [14], [20].

Most importantly, Figs. 1, 2 and 3 show that, for SINC PSAM, Max-
ASNR BF (which is MREC with ) yields the lowest AEP when
the branches are highly correlated. However, MREC with
yields much lower AEP than Max-ASNR BF when the branches are
only partially correlated, as is also observed by simulation in [7] and
[12]. Note also that MREC with may even outperform MRC
(equivalent to full MREC for SINC PSAM), since the former combines
only the eigen-branches with highest average SNR, while the latter
combines virtually all eigen-branches.

These observations are further illustrated in Fig. 4, where the AEP
computed using (37) is depicted versus the symbol SNR for .
Note that for , MREC with has an advantage of
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Figure 6: MRC andMREC BER vs. , obtainedby simulation, for MMSE PSAM channel
estimation.

almost dB compared to Max-ASNR BF and over dB compared to
MRC. Furthermore, this gure shows that, besides the fading corre-
lation, the symbol SNR, which impacts the quality of the estimates,
is also an important factor determining the relative performance of
MREC, Max-ASNR BF and MRC, as noted in [14]. Ideally, the pro-
cessing algorithm controlling a smart antenna system should adap-
tively choose the best combining approach for the encountered chan-
nel. In [9] we described a method which trades off detection perfor-
mance and complexity in selecting the MREC order.

For the case of MMSE PSAM estimation, Fig. 5 showsMREC AEP
plots obtained using (37). These results match the simulation results
presented in Fig. 6 quite closely. These gures show that for correlated
branches MRC is not equivalent to full MREC, a result which should
be expected because(41) does not hold for MMSE PSAM. Once again,
for , the performance advantage of MREC over Max-
ASNR BF and MRC may be signicant.

Notice from Figs. 2 and 3 that for SINC PSAM, given , the sym-
bol detection performance may degrade when the MREC order is in-
creased. This happens because the eigen-branch estimate correspond-
ing to a very small eigenvalue is mainly due to the corresponding noise
and may not be close to zero for SINC PSAM, as seen from (42) and
Tables 1 and 2. For MMSE PSAM such eigen-brancheswill have a cor-
respondingly small contribution to the combiner’s output, and there-
fore MREC performance always improves with increasing order, as
suggested by the plots in Figs. 5 and 6.

Let us now consider a larger normalized inter-element distance, e.g.,
. For and , the correlation coefcient for two

adjacent branches was found to be about , making MRC appropri-
ate for this particular situation. However, for the correla-
tion coefcient increases to about . This result is consistent with
observations from [23] and [24]. For SINC PSAM, Fig. 7 shows that
at , MREC with yields an advantage of about

dB over MRC. Since MRC and full MREC are equivalent for
SINC PSAM, the method devised in [9] can be used to select the
MREC order which will ensure near-optimal detection performance
and low complexity.

Finally, we note that although the numerical results shown herein
are for uniform AOA distribution, we also considered the case of
Laplacian AOA distribution [24] and obtained similar results which
are not shown.
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Figure 7: MREC AEP obtained with (37) vs. the symbol SNR , for SINC PSAM
channel estimation, when , and .

V. Conclusions

In this paperwe analyzedmaximal-ratio eigen-combining for Rayleigh
fading channels and BPSK signals. For perfectly known, correlated
channel gains which may have unequal variances, we obtained average
error probability and outage probability expressions for MREC, with
MRC and Max-ASNR BF as special cases. For imperfectly known,
correlated channel gains we derived a novel and general AEP expres-
sion for MREC, which was further specialized for fading gain estima-
tion based on pilot-symbol-aided modulation and interpolation. In par-
ticular, the result applies to Max-ASNR BF, and to MRC for correlated
channels which are estimated using PSAM and data-independent in-
terpolation. The results of our analysis are investigated numerically for
antenna arrays receiving signalswith uniformly distributed angle of ar-
rival. Signicant gains are observed with MREC over Max-ASNR BF
andMRC for moderately correlated, imperfectly known channel gains.
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