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Abstract

The problem of decentralized sequential detection is studied in this thesis, where

local sensors are memoryless, receive independent observations, and no feedback from

the fusion center. In addition to traditional criteria of detection delay and error

probability, we introduce a new constraint: the number of communications between

local sensors and the fusion center. This metric is able to reflect both the cost of

establishing communication links as well as overall energy consumption over time.

A new formulation for communication-efficient decentralized sequential detection is

proposed where the overall detection delay is minimized with constraints on both

error probabilities and the communication cost.

Two types of problems are investigated based on the communication-efficient for-

mulation: decentralized hypothesis testing and decentralized change detection. In the

former case, an asymptotically person-by-person optimum detection framework is de-

veloped, where the fusion center performs a sequential probability ratio test based on

dependent observations. The proposed algorithm utilizes not only reported statistics

from local sensors, but also the reporting times. The asymptotically relative effi-

ciency of proposed algorithm with respect to the centralized strategy is expressed in

closed form. When the probabilities of false alarm and missed detection are close to

one another, a reduced-complexity algorithm is proposed based on a Poisson arrival
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approximation.

In addition, decentralized change detection with a communication cost constraint

is also investigated. A person-by-person optimum change detection algorithm is pro-

posed, where transmissions of sensing reports are modeled as a Poisson process. The

optimum threshold value is obtained through dynamic programming. An alternative

method with a simpler fusion rule is also proposed, where the threshold values in

the algorithm are determined by a combination of sequential detection analysis and

constrained optimization. In both decentralized hypothesis testing and change detec-

tion problems, tradeoffs in parameter choices are investigated through Monte Carlo

simulations.
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Chapter 1

Introduction

1.1 Sequential detection

The problem of sequential detection is of considerable practical importance in a va-

riety of applications including cognitive radio networks, quality control engineering,

biomedical signal processing and surveillance systems, etc. [1]-[2]. Unlike fixed sam-

ple size detection schemes [3]-[14], where the number of collected measurements is

pre-specified, sequential detection allows the flexibility of stopping the test when

observations are informative enough to guarantee a desired performance usually ex-

pressed in terms of error probability. As decisions are made as quickly as possible,

sequential detection requires, on average, fewer observations than that of fixed sample

size detection.

Existing research work conducted on sequential detection may be grouped into

two broad categories: sequential hypothesis testing [16]-[18] and sequential change

detection [19]-[23]. The problem of sequential hypothesis testing is to decide between

two possible statistical models based on sequentially observed random variables. It
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is shown that Wald’s sequential probability ratio test (SPRT) offers optimal perfor-

mance in sense that a minimum expected number of observations is needed to achieve

predefined error probabilities [16]. On the other hand, the change detection problem

is to find, as quickly as possible, an abrupt change in the statistical behavior of

stochastic observations [15]. It is of interest to perform detection of a change in a

way that minimizes the delay between the time that a change occurs and the time it

is detected. The optimality of change detection strategies is studied in [24]-[26].

In wireless communication problems caused by multipath fading, shadowing and

hidden terminal phenomena, single node, or centralized based sequential detection

encounters many limitations [27]-[28]. As a result, there has been increasing interest in

decentralized formulations of sequential detection [29]-[48]. In a decentralized system,

information about the sensed target is available through measurements taken by a

set of geographically distributed local sensors. A central entity (fusion center) makes

final decision based only on the local decisions or summarized statistics reported by

these sensors.

Previous investigations of decentralized detection apply both hard combining and

soft combining strategies at the fusion center. In hard combining strategies, local

sensors make decisions based on their own observations and subsequently forward bi-

nary information to the fusion center [29], [43]-[44]. Based on reported local sensing

results, the fusion center can apply AND, OR, or majority rule for decision making.

However, with a hard combining strategy, the fusion center cannot make a decision

until local sensors have made decisions. This means that detection delay is not signif-

icantly reduced even though multiple sensors are used. For soft combining strategies
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[31]-[37] [47]-[49], a local sensor sends a sequence of quantized observations or sum-

marized information to the fusion center. Reported information by local sensors are

viewed as observations of the fusion center, based on which a sequential test is carried

out to make the final decision.

1.2 Related work

1.2.1 Decentralized hypothesis testing

A hard combining based decentralized framework is proposed in [29], where local sen-

sors make their own decisions on the hypothesis, and the fusion rule applies either

AND, OR, or Majority rule. A decentralized Wald’s problem is investigated in [30].

Although each detector makes its own final decision, the detection policy is designed

to minimize the cost of the entire detection system. In [31], local sensing information

is quantized through likelihood ratio tests. Based on achieved summarized messages,

a sequential test is performed at the fusion center. Under the setup that local sen-

sors have full feedback from the fusion center and local memories are restricted to

past decisions, an optimal decentralized sequential detection can be found. In [33],

an alternative configuration with full or limited local memory but no fusion center

feedback is considered. Though an optimal solution for such a setup is intractable,

an asymptotically optimal solution can be achieved. In the case that local mem-

ory is limited, each local sensor summarizes its previous observations; together with

its current observations, quantized information is send to the fusion center. This

configuration is also considered in [34], where asymptotically optimal schemes are

suggested in both discrete and continuous time scenarios. In the system considered

in [35], neither feedback from the fusion center nor the local memory is available at

sdb2
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local sensors. It is shown that person-by-person optimal sensor decision functions

for such configuration are likelihood ratio tests. However, the optimal thresholds,

which satisfy a set of coupled equations, are almost impossible to solve numerically.

Moreover, asynchronous communication between local sensors and the fusion cen-

ter is considered in [34]. That is, rather than transmit sensing reports at common,

deterministic, equidistant times [31]-[32], local sensors communicate with the fusion

center when a certain local test’s stopping condition is satisfied. A different asyn-

chronous scheme is proposed in [36], where local decisions are generated according

to a Poisson process at each local sensor. In [37], the communication noise between

local sensors and the fusion center is considered. A DualSPRT algorithm is proposed

with local memory and synchronous communication in [38]. It is assumed that the

false alarm and missed detection probabilities are same at local sensors, and that the

absolute values of lower and upper thresholds for local log-likelihood ratio tests are

the same as well. This setup is also assumed in [37] for performance analysis. Under

such conditions, both error probabilities and the delay of local sequential tests can

be computed from the theory of random walks. A sequential detection framework of

Gaussian binary hypothesis is developed in [39], where the communication between

adjacent local sensors is available.

Most existing decentralized hypothesis testing approaches are restricted to test

two simple hypotheses. The problem of sequential multiple hypothesis testing, with

more than two hypotheses is more challenging; even in the classical centralized case,

the solution is very complex in general [40]. A person-by-person optimal decision

rule is developed in [41], where the observations are independent and uniformly dis-

tributed. A two-stage test is proposed for multiple hypothesis detection in [42], and

sdb2
Highlight
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the asymptotic optimality of such a test is established.

1.2.2 Decentralized change detection

In [43], a one-shot cumulative sum (CUSUM) scheme is introduced. Each sensor

runs a CUSUM algorithm and communicates with the fusion center only when it

believes that a change has occurred. In this approach, the fusion center can either

apply a so-called minimal or maximal strategy for decision making. In the former

case, the fusion center signals a change to have occurred when any of the sensors

reports a change. In the latter case, the fusion center signals a change when all

sensors report a change. In [44], a one-shot CUSUM scheme with a minimal fusion

strategy is applied. Moreover, it is assumed that change times at local sensors may

be different. An asymptotically Min-Max optimal algorithm is proposed in [55], by

combining CUSUM test and a maximal fusion strategy. A main drawback of [43] and

[44] is that the fusion center cannot make a decision until local sensors have made

decisions.

A Bayesian formulation of the decentralized change detection problem with energy

constraints is considered in [45], and the formulated problem is solved though dynamic

programming. Another work that takes energy constraints into account is proposed

in [46], where local sensors do not have full feedback. In [47], local sensors with

memory are considered that record their past local decisions and also utilize full

feedback from the fusion center. At each sensing period, reports generated from

current local observations and past decisions from all the sensors are forwarded to

the fusion center. The fusion center receives sensing reports sequentially and stops

sensing when it is able to make a decision. However, such continuous communication
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between local sensors and the fusion center may be too costly for some applications.

For example, remote sensors with energy constraints may not afford such continuous

communication with the fusion center. A data-efficient quickest change detection

scheme is developed in [48] and [49] based on a minimax formulation, where the cost

in taking samples is controlled through a censoring technique.

One of the major problems in existing soft combining based algorithms is that

unlimited local memory is required to store the sensing history [48]-[49], i.e., all

previous observed information and local decisions. In [47], full feedback from the

fusion center is additionally assumed to obtain the optimal solution. These conditions

on sensing devices are strong and therefore restrict practical applications. Moreover,

in [47]-[48], the decision policy at each local sensor requires sensing information from

other local sensors as well. Thus, each local sensor must continuously communicate

with the fusion center to update its local test statistic. Such communication is costly,

especially when sensors have energy constraints and are sparsely located.

1.3 Thesis objective

Existing works make a variety of assumptions on the functionalities of sensing de-

vices, including local memory, full feedback from the fusion center, etc. However,

these requirements on the sensing devices may not always be satisfied and therefore

restrict real applications. In practice, the communication between local sensors and

the fusion center is costly.Not only does this introduce extra overhead but also results

in considerable local sensor energy consumption, especially when sensors are distantly

located.
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The objective of this thesis is to develop decentralized sequential detection frame-

works for both hypothesis testing and change detection problems, where local sen-

sors are memoryless, without full feedback from the fusion center, and have energy

constraints. Moreover, in addition to detection delay and the error probability, we

introduce a new communication cost metric, which is able to control local sensor en-

ergy consumption and transmission overhead in the link between local sensors and

the fusion center. The new formulated optimization problem aims to minimize the

overall detection delay with constraints on both error probability and communication

cost. Detection methodologies to solve formulated problems are studied in different

contexts.

1.4 Thesis organization

The rest of the thesis is organized as follows.

In Chapter 2, preliminary background material to the thesis results are introduced.

In Chapter 3, the problem of decentralized hypothesis testing is investigated. A

communication-efficient formulation is proposed, where average detection delay is

minimized with constraints on error probabilities and on communication cost. An

asymptotically person-by-person optimal algorithm is developed to solve the formu-

lated problem, and the asymptotically relative efficiency (ARE) of the developed

algorithm with respect to the centralized strategy is proposed as a performance met-

ric.

In Chapter 4, a more practical method to solve the formulated hypothesis testing

problem is developed, where sensing report transmissions from local sensors to the

fusion center are modeled as a Poisson arrival process. A communication-efficient
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decentralized hypothesis detection algorithm is proposed, where both local sensors

and the fusion center apply the sequential probability ratio test (SPRT). The ARE

performance is also investigated.

The decentralized change detection problem is investigated in Chapters 5 and 6. In

Chapter 5, the communication cost is formulated in two different ways, and threshold

values for the optimum stopping times are investigated in both cases. Following

the same model of a Poisson arrival process as in Chapter 4, a person-by-person

communication-efficient decentralized change detection algorithm is proposed.

In Chapter 6, an alternative way to solve the formulated change detection problem

is studied, where synchronization is not required and the fusion center applies a

simpler fusing strategy. The methodology to joint threshold value design at local

sensors and the fusion center is investigated.

The conclusions and suggestions for future work are provided in Chapter 7.

1.5 Contributions

The main contributions of the thesis are summarized as follows:

• New formulations for both decentralized hypothesis testing and decentralized

change detection problems are presented, where local sensors are memoryless,

receive independent observations, and no feedback from the fusion center.

• In addition to average detection delay and the error probability, which have been

previously used for system design and performance assessment, we introduce

a new constraint: the number of communications between local sensors and

the fusion center. This metric is able to reflect both the cost of establishing

communication links as well as overall energy consumption over time.
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• An asymptotically person-by-person optimal decentralized hypothesis testing

algorithm is developed to solve proposed optimization problem that exploits

time dependency of locally transmitted decisions. The fusion center test utilizes

not only the statistic contained in local sensing reports, but also the times at

which these reports are received.

• The performance of the proposed hypothesis testing algorithm with respect

to the centralized detection scheme is quantified via the asymptotic relative

efficiency (ARE). We derive closed form expressions for ARE as the function of

the communication cost and error probabilities at both local sensors and fusion

center tests.

• A practical methodology is developed to solve formulated hypothesis testing

problem, by fusing only the reported statistic at the fusion center. As the de-

pendency of the report-generating delay is ignored, the arrival times of sensing

reports are assumed memoryless, and therefore the transmissions of local re-

ports are modeled as a Poisson process. Situations where this approximation is

accurate are determined. The ARE of the proposed algorithm with respect to

the centralized strategy is also investigated.

• A person-by-person optimal decentralized change detection algorithm is pro-

posed, based on a Poisson arrival model. The communication cost is formulated

in two different ways, and threshold values for the optimum stopping rule are

obtained through dynamic programming.

• An alternative change detection algorithm with a simpler fusion rule is de-

veloped. In the proposed algorithm, thresholds at both local sensors and the
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fusion center ought to be jointly optimized. It is shown the optimal choice of

thresholds in the algorithm can be obtained through one dimensional search.

Precise synchronization of sensing devices can be avoided, however, at a price

of performance degradation.
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Chapter 2

Background

2.1 Introduction

In this chapter, preliminary background material to the thesis results are introduced.

We first discuss sequential detection, which includes the problems of hypothesis test-

ing and change detection. Then, the decentralized sensing system model is introduced.

Here, rather than providing a complete and balanced review we put emphasis on what

we will need in later chapters. For a more general setting and background, we refer

interested readers to [15], [31], and [50].

2.2 Sequential hypothesis testing

Consider a sequence of independent and identically distributed (IID) random vari-

ables, X1, X2, ..., which has either the common probability density function (PDF) f0

or f1, i.e.,

H0 : X1, X2, ... ∼ f0,

H1 : X1, X2, ... ∼ f1, (2.1)



2.2. SEQUENTIAL HYPOTHESIS TESTING 12

The criteria for the choice of sequential tests are the error probabilities and the average

detection delay. There are two types of errors in the hypothesis testing problem,

(i) False alarm probability, P0(Accept H1); and

(ii) Missed detection probability, P1(Reject H1).

Smaller values of the error probabilities indicate more reliable detection results. In

sequential tests, it is required that P0(Accept H1) ≤ α and P1(Reject H1) ≤ β, where

α and β are constraints on the false alarm and missed detection probabilities, respec-

tively. The detection delay, or the number of observations, required by a sequential

test, is a random variable and usually characterized by its expected value, i.e.,

(i) E1{v}; and

(ii) E0{v},

where v denotes the delay of the sequential test and Eθ{•} is the conditional expec-

tation under Hθ, {0, 1}.

It is desirable that the expected delay of the test is as short as possible, while the

error probability constraints are satisfied. A classic hypothesis testing procedure is

to track the likelihood ratios of the sequential observations, i.e.,

gk =
k∑
i=1

log
f1(Xi)

f0(Xi)
, (2.2)

where gk is the test statistic after taking k observations. The cumulated statistic is

compared to the predefined test threshold values a < 0 < b, and the stopping time of

the test is defined as

v = inf{v ≥ 1 : gk /∈ (a, b)}. (2.3)
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The final decision of the test is then given by

Accept H1 if gv ≥ b,

Reject H1 if gv ≤ a. (2.4)

The above test is the well-known sequential probability ratio test (SPRT), which is

developed by Wald in 1948 [16].

Theorem 2.1 (Wald optimality [16]). Among all tests (sequential or non-sequential)

for which

P0(Accept H1) ≤ α and P1(Reject H1) ≤ β,

and for which Eθ{v}, θ ∈ {0, 1}, is finite, the sequential probability ratio test with

error probabilities α and β minimizes both E1{v} and E0{v} simultaneously.

Remark 2.1. It is further shown by Lorden that the condition of finite E1{v} and

E0{v} is not needed [51].

Proposition 2.1 (The test threshold [16]). The threshold values and error prob-

abilities are related via

a ≤ log
β

1− α and b ≥ log
1− β
α

. (2.5)

A further pair of inequalities can be used to relate the error probabilities to the

expected detection delay.

Proposition 2.2 (The detection delay [16]). Suppose the random variable log f1(X1)
f0(X0)
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has finite means d0 and d1, respectively, under Hθ, θ ∈ {0, 1}. Then

E0{v} ≥ d−1
0

[
α log

1− β
α

+ (1− α) log
β

1− α

]
,

E1{v} ≥ d−1
1

[
(1− β) log

1− β
α

+ β log
β

1− α

]
. (2.6)

Remark 2.2. Based on Theorem 2.1, the inequalities of Proposition 2.2 hold for all

tests (sequential or non-sequential) with error probabilities α and β.

In general, the conditions for equality in Proposition 2.1 and 2.2 will not be met.

However, if the excess over boundary parts, i.e., a − gv or gv − b, are negligible,

the inequalities can be considered as approximate equalities, which are known as

Wald’s approximations. As the error probability decrease, a greater upper boundary

threshold, b, and a smaller lower boundary threshold value, a, are required. Then

the quantity of likelihood ratio log f1(X1)/f0(X0) becomes less significant compared

to the threshold values. As a result, the effect of ignoring the excess over boundary

parts is smaller. Thus, the accuracy of Wald’s approximations increases as the error

probabilities decrease. Further more, the bounds in Proposition 2.1 and 2.2 can be

viewed as asymptotically closed form expressions for test thresholds and delays, as

α, β → 0.

2.2.1 Relative efficiency

It is of interest to compare the performance of sequential tests versus that of fixed

sample sized tests. The best fixed sample size (FSS) is given by

vF∑
i=1

log
f1(Xi)

f0(Xi)

H1

≶
H0

TF , (2.7)
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where the threshold TF and the fixed sample size vF are chosen such that the test

has false alarm and missed detection probabilities equal α and β, respectively.

Definition 2.1 (Relative efficiency [52]). The relative efficiency of the detector

DT1 with respect to the detector DT2 is

REDT1,DT2 =
v2

v1

, (2.8)

where v1 and v2 are the expected delay of detectors DT1 and DT2, respectively.

From (2.6), we have the relative efficiency of FSS test with respect to SPRT given by

REFSS,SPRT =
Eθ{v}
vF

, θ ∈ {0, 1}. (2.9)

The above relative efficiency depends on α and β and, in general, on theHθ, θ ∈ {0, 1}.

The asymptotic relative efficiency (ARE) is the limiting value of the relative efficiency

as H1 approaches H0.

Proposition 2.3 (Asymptotic relative efficiency [53]). The asymptotic relative

efficiency of the FSS test with respect to the SPRT is given by

ARE0 = −2

(
α log

1− β
α

+ (1− α) log
β

1− α

)(
N−1(α) + N−1(β)

)−2
,(2.10)

ARE1 = 2

(
(1− β) log

1− β
α

+ β log
β

1− α

)(
N−1(α) + N−1(β)

)−2
, (2.11)

where AREθ denotes the asymptotic relative efficiencies under Hθ, θ ∈ {0, 1}, and

N(•) is the standard normal distribution.
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2.2.2 Dependent observations

In case that the observations X1, X2, ... are statistically dependent, the test statistic,

gk, is no longer a sum of IID random variables. The test statistic of SPRT is the ratio

of joint probability density functions of observed information, i.e.,

fd,1(X1, X2, ...)

fd,0(X1, X2, ...)


≤ ak, H0 is true,

≥ bk, H1 is true,

otherwise, continue taking observations.

(2.12)

Theorem 2.2 (Optimality with dependent Gaussian variables [69]). For de-

pendent Gaussian random variables, the optimum detector has the form of (2.12).

However, the test threshold values in (2.12), ak < 0 < bk, are time varying, and the

design of which is still an open problem. If observations are not Gaussian random

variables, no optimum tests have been established. There are relatively few sequential

detection results developed using dependent observations, most of which use constant

threshold values a < 0 < b.

Proposition 2.4. The Wald’s SPRT in (2.12) still preserves the inequalities (2.5).

It is further shown in [73] that with constant threshold values a < 0 < b, the SPRT

test in (2.12) is asymptotically optimum as α + β → 0, in certain cases.

2.3 Sequential Change detection

We now discuss another type of sequential detection: sequential change detection.

Consider a sequence of observations X1, X2, ... which initially has common probability
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density function (PDF) f0, and starts to follow common PDF f1 after a random

change point Γ. Such a change point is often modeled as geometrically distributed.

Let 0 < ρ < 1 denote the distribution parameter, and 0 ≤ π0 < 1 denote the prior

probability that a change happened before the test. We have

P (Γ = k) = π0I{k=0} + (1− π0)ρ(1− ρ)k−1I{k≥1}, (2.13)

where I{•} is the indicator function, and π0 represents the probability of the change

having occurred before the observations are taken. The change detection problem

can be then expressed as the following multiple hypothesis testing problem:

H0 : X1, ..., XΓ−1 ∼ f0,

H1 : XΓ, XΓ+1, ... ∼ f1, (2.14)

where each integer Γ indicates a different hypothesized change time.

During the change detection procedure, after taking a new observation, the de-

tector either stops and claims a change or continues taking a new observation. It is

desirable that the test stops as quickly as possible when a change has occurred. Let

τ denote the stopping time of a certain sequential test. The criteria of the change

detection can be then expressed as

(i) The expected detection delay, E{(τ − Γ)+}; and

(ii) False alarm probability, P (τ < Γ),

where (x)+ = max{x, 0}. The stopping time τ of a certain sequential test is deter-

mined to achieve optimal trade-offs between the average detection delay and false
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alarm probability. This can be implemented by solving following optimization prob-

lem

inf
τ

[P (τ < Γ) + cE{(τ − Γ)+}], (2.15)

where c > 0 is a constant controlling the relative importance of the two performance

metrics. The formulation of (2.15) for the change detection problem is first introduced

in [26].

Definition 2.2. The posterior probability that a change has occurred at the kth time

slot,

πk = P (Γ ≤ k|Fk), (2.16)

where Fk = σ(X1, X2, ..., Xk) are the sigma algebras generated by the observed infor-

mation up to the kth time slot.

Remark 2.3. Under the geometric prior (2.13), the sequence of posteriors {πk} can

be calculated recursively, i.e.,

πk =
P1(Xk) [πk−1 + ρ(1− πk−1)]

P1(Xk) [πk−1 + ρ(1− πk−1)] + (1− ρ)(1− πk−1)
. (2.17)

Theorem 2.3 (Kolmogorov and Shiryaev [26]). For appropriately chosen thresh-

old π∗ ∈ {0, 1}, the stopping time

τS = inf{k ≥ 0|πk ≥ π∗} (2.18)

is optimum in solving (2.15) with the prior (2.13). Moreover, if c ≥ 1, then π∗ = 0.

So far we assume that the distribution of the change point is known in prior (2.13).

However, there are some situations that the pre-existing statistic model for the change
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occurrence is unavailable. In such cases, the change detection problem is formulated

alternatively, and the ”worst case” detection delay is evaluated.

Definition 2.3 (Lorden [70]). The ”worst case” detection delay of a change detec-

tion problem is given by

EΓ{v} = sup
Γ≥1

(
ess supEΓ{(τ − Γ)+|X1, ..., XΓ−1}

)
. (2.19)

Remark 2.4. If EΓ{v} is finite, then we will have a false alarm with probability one

even if there are no changes. The criterion of the false alarm can also be measured

by the false alarm rate, i.e.,

Rf =
1

E∞{v}
≤ γ. (2.20)

Here E∞{•} is the conditional expectation when there is no change and γ is the

false alarm rate constraint. A good decision policy for change detection should have

E∞{v} large and at the same time obtain small EΓ{v}. The well known cumula-

tive sum test (CUSUM) is first introduced by Page [19], where the detector tracks

likelihood ratios for all possible change hypotheses given by

gk = max
1≤j≤k

k∑
i=j

log
f1(Xi)

f0(Xi)
. (2.21)

At each time slot the test statistic is compared to a pre-defined threshold, h, the

value of which is set to satisfy the false alarm constraint. The stopping time can be

then expressed as

τh = inf{k ≥ 1|gk ≥ h}. (2.22)

Theorem 2.4 (Moustakides [24]). τh minimizes the worst case detection delay
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(2.19) among all stopping times satisfying γ = 1/E∞{τh}.

From (2.2) and (2.21), the CUSUM test can be expressed as a sequence of se-

quential ratio probability tests (SPRT) with boundaries (0, hl) and initial statistic

zero [19]. Each time the lower boundary is exceeded, the test resets its statistic to

zero and continues taking observations. Such procedure is repeated until the upper

boundary is reached, and then a change is claimed.

2.4 Decentralized sequential detection

Sequential detection with a single sensing device encounters many limitations. As

a result, there has been increasing interest in the decentralized formulations of se-

quential detection. In practice, the configurations of the decentralized system varies

according to the requirement of the applications, and therefore lead to different for-

mulates of the decentralized sequential detection problem. We start with a general

form of the decentralized system model, and then discuss possible modifications to it.

As in Figure 1.1, multiple sensing devices work cooperatively to finish the de-

tection task. Local sensors S1 and S2 take observations individually and transmit

sensing reports to a central unit, fusion center F , for decision making. During the

detection progress, local sensors may exchange information to improve the detection

performance, and the fusion center is able to send feedback to local sensors to adjust

local sensing policies. In general, the fusion center makes the final decision based only

on the sensing reports transmitted from local sensors. The reported information is

received sequentially, based on which a sequential test can be performed at the fusion

center.
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F

Decision Making

S1 S2

Observation 1 Observation 2

Reporting Reporting

Feedback Feedback

Data transmission

Figure 2.1: Decentralized sensing system.

In some applications, the fusion center may take observations itself, and combine

these observations with the reported information to make a final decision [54]. It is

also possible that the role of the fusion center being replaced by local sensors. That

is, each sensor takes both local observations and sensing reports from other sensors.

Any sensor in the system is able to make a finial decision, as long as its stopping

condition is satisfied [55]-[57].

Two important functionalities are usually discussed in the design of decentralized

sensing systems: local sensor memory and feedback. If local memory is available at

each sensor, the observations taken during the detection task can all be recorded, and

the sensing reports generated by a local sensor is based on the observation taken at

the current time slot and all past observations recorded in the memory. The feedback

from the fusion center provides a local sensor with the reported information of other

local sensors. A sensing system has full feedback if local sensors are able to obtain
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the complete reporting histories of each other through fusion center feedback. Let

Υm be the local decision policy and Jmk denote the reported information at time k

from the mth local sensor. We have the following five different formulations of the

decentralized sensing system.

(i) No local memory, no feedback [58].

Local decision making is based only on the currently observed sample, i.e.,

Jmk = Υm
k (Xm

k ). (2.23)

It is shown that the person-by-person optimal sensor decision functions are

likelihood ratio tests. A set of decision functions is said to be person-by-person

optimal if it is not possible to improve the corresponding team performance by

unilaterally changing any one of the decision functions [31].

(ii) With local memory, no feedback [59].

Jmk = Υm
k (Xm

1 , ..., X
m
k ). (2.24)

No optimum solution is proved.

(iii) No feedback, local memory restricted to past decisions [60].

Jmk = Υm
k (Xm

1 , J
m
1 , ..., J

m
k−1). (2.25)

It is shown in [60] that likelihood ratio tests are optimal.
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(iv) Full feedback, full local memory.

Jmk = Υm
k (Xm

[1,k], J
m
[1,k−1], ..., J

m
[1,k−1]). (2.26)

No optimum solution is proved.

(v) Full feedback, local memory restricted to past decisions [31].

Jmk = Υm
k (Xm

k , J
m
[1,k−1], ..., J

m
[1,k−1]). (2.27)

Optimum solution is given in [31] using dynamic programming arguments [61]-

[62].

We are interested in the first case where local sensors are memoryless and without

feedback from the fusion center, since this is the most practical model which can

be implemented with simple sensing devices. Moreover, the transmission of sensing

reports between local sensors and the fusion center is costly in some applications.

This transmission not only introduces extra overhead but also results in considerable

local sensor energy consumption, especially when sensors are distantly located. Thus,

in addition to the error probability and detection delay, we would like to control such

cost as well. In this thesis, communication-efficient sequential detection schemes are

developed in various contexts.
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Chapter 3

Communication-efficient decentralized hypothesis

testing

3.1 Introduction

In this chapter, we investigate the decentralized hypothesis testing problem. We first

introduce the system model, where sensing devices are energy constrained, memory-

less, and without full feedback as discussed in the previous chapter. Since sensing

devices are geographically separated and are usually located at different distances

from the fusion center, the transmission costs of different local sensors are modeled

as non-identical. An optimization problem is then formulated which minimizes the

overall detection delay with constraints on both error probabilities and the commu-

nication cost. An asymptotically person-by-person optimal algorithm is developed to

solve the proposed optimization problem, and asymptotic optimality is established.

In order to evaluate the performance of the proposed algorithm, we further investi-

gate its asymptotic relative efficiency (ARE) with respect to the centralized detection

algorithm, corresponding to the ideal scenario of zero transmission cost.
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3.2 System model

We consider a distributed sensing system with M geographically separated sensors,

S1, ..., SM , and fusion center, F , that comprise the sensing system shown in Figure 1.

The fusion center can only gain access to the data of the sensed target through each

local sensor. Each sensor takes observations sequentially and forwards sensing reports

to the fusion center where the final decision is made. Let Xk denote the observation

obtained by a certain sensor at time slot k. We consider a binary hypothesis problem

where Xk has either the common probability density function (PDF) f0 or f1, i.e.,

H0 : X1, X2, ... ∼ f0,

H1 : X1, X2, ... ∼ f1, (3.1)

with known prior probabilities

P (H0) = p0 and P (H1) = 1− p0. (3.2)

The cost to transmit a single sensing report from sensor m to the fusion center

is denoted by wm, m = 1, 2, ...,M . This assumed cost structure may represent local

energy consumption and transmission overhead. The value of such cost controls the

relative importance of different control links, and encourages more transmissions on

link(s) with low cost. Thus, we can also relate wm, m = 1, ...,M to the network layer

reliability of the sensing system, e.g., packet loss probability.
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F

Decision Making

S1 S2
......S3 SM

Target

w1 w2 w3 wM

Figure 3.1: Detection system with non-identical control links.

Local sensors are able to communicate with the fusion center through a control

link, but communications among local sensors are not permitted. We assume that the

communication channel between sensors and fusion center is error-free and extremely

limited two-way communication is possible: the fusion center only provides local

sensors simple acknowledgments to stop sensing when it is able to make a decision;

otherwise, there is no feedback from the fusion center. The observations across sensors

are independent and identically distributed conditioned on the hypothesis H0 or H1.

This assumption reflects the fact that sensor noise is local.

3.3 Problem formulation

After taking each observation, a local sensor decides whether it is worth sending a

report to the fusion center. Let Tk ∈ {0, 1} denote the reporting decision indicator of
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a certain sensor at time k, defined as follows:

Tk = ηk(gk−1, Xk), k = 1, 2... (3.3)

where gk−1 is the cumulative statistic based on observations before time k, i.e.,

{X1, ..., Xk−1}, and ηk is the local decision policy at time k. If Tk = 1, the local

sensor forwards a local sensor report to the fusion center. If Tk = 0, the local sensor

does not send a report but continues taking observations. Reported information by

the local sensor is the accumulated statistic at time k and takes the form

rk =


0, Tk = 0,

gk, Tk = 1,

(3.4)

where rk = 0 means that no report is transmitted from sensor m to the fusion center.

After transmitting a sensing report to the fusion center, each local sensor test statistic

is reinitialized to zero. It is not necessary for a local sensor to draw a conclusion on a

hypothesis. Only if a local sensor makes a decision in favor of either hypothesis does

it forward a report to the fusion center.

At the fusion center, sensing reports from local sensors are received sequentially,

and comprise the observations at the fusion center. The cumulative statistic at time

slot k at the fusion center is updated based on reported sensed information via

uk = ψ(uk−1, rk), k = 1, 2..., (3.5)

where ψ represents the update function. rk = [r1
k, r

2
k, ..., r

M
k ] is the M -dimensional

vector of reported sensed information at the kth time slot, with components rmk ,
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m ∈ {1, ...,M} representing the information reported by the m-th local sensor. Lo-

cal sensors do not send reports when rmk = 0, and the fusion center can infer this

information by knowing that a report is missing. Thus, the total communication cost

for reports transmission received by the fusion center in (3.8) during the detection

process is given by

R =
τ∑
k=1

M∑
m=1

wm × I{rmk 6=0}, (3.6)

where I{•} is the indicator function and wm is the cost of transmitting a single report

to the fusion center through sensor m. Based on the statistic uk, the fusion center

makes decisions on whether to stop and make a final decision on H0 or H1 or to

continue receiving sensing reports, i.e.,

Dk = φ(uk), n = 1, 2..., (3.7)

where φ is the decision policy. Dk ∈ {0, 1} denotes the stopping decision of the fusion

center at time k. If Dk = 1, the fusion center stops and claims H0 or H1 when lower

or upper threshold is exceeded, respectively. If Dk = 0, the detection task continues.

We are interested in a detection strategy that minimizes the overall expected

detection delay under error probability and communication cost constraints, i.e.,

minimize
η φ

E{τ},

subject to PFAC ≤ αC , PMDC ≤ βC ,

and E{R} ≤ κ, (3.8)

where τ represents the stopping time of the fusion center, PFAC and PMDC denote
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false alarm and missed detection probabilities, constrained to αC and βC , respec-

tively. R is the total transmission cost for local sensors to send reports to the fusion

center during the detection task and κ is a given communication cost constraint.

The proposed communication metric is able to reflect the cost of energy consumption

and transmission overhead at local sensors. In contrast to other formulations, the

proposed communication cost restricts channel uses rather than bandwidth of the

control link. As the communication constraint increases, local sensing devices are

able to send more reports to the fusion center.

In case that κ is greater than the average number of samples required by the

centralized detection scheme, the communication cost constraint vanishes. Moreover,

the value of κ should be set to support at least one transmission from each local

sensor to the fusion center. Therefore κ should satisfy

M∑
m=1

wm < κ <
M

dθ

[
βθlog

1− βC
αC

+ (1− βθ)log
βC

1− αC

]
, (3.9)

with

dθ = Eθ

{
log

f1(X1
1 , ..., X

M
1 )

f0(X1
1 , ..., X

M
1 )

}
, θ ∈ {0, 1}, (3.10)

where fθ(X
1, ..., XM) denotes the joint PDF of local observations under Hθ, θ ∈

{0, 1}. The rightmost term in (3.9) represents a lower bound on the average number

of samples transmitted to the fusion center for the centralized detection scheme using

the optimal sequential probability ratio test (SPRT) . In the rest of this paper, the

optimization problem (3.8) applies to a communication cost constraint which satisfies

(3.9); otherwise the formulated problem degenerates either to the Or-rule or to the

centralized scheme.
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Remark 3.1. In case that the communication cost constraint is large enough, the

local error probability constraints loosen to the point where all local observations are

reported to the fusion center directly, and the optimal solution to the formulated prob-

lem is the centralized scheme. That is, the local SPRT thresholds converge to each

other and communication between local sensors and the fusion center is not limited.

Remark 3.2. If the communication constraint is at the most restricted extreme, each

of the local sensors performs a SPRT with error probability constraints equal to the

overall error probability constraints. The fusion center makes a final decision when

the first local sensing report is received. This leads to an Or-rule scheme.

3.4 Decentralized sensing strategy

In the sensing system, local sensors cannot communicate with one another, and the

fusion center only provides minimum feedback when a final decision is made. Thus,

sensing devices cannot optimize their strategies cooperatively; the best they can do

is to individually optimize their strategies based on local information. Such a sub-

optimal approach is referred as person-by-person optimization [31], where it is not

possible to improve overall team performance by unilaterally changing any of the de-

cision functions. More specifically, we first investigate the optimal sensing strategy

at each local sensor. Following this, we develop the optimal fusion rule for fixed local

sensing policies. The proposed detection strategy is based on the following assump-

tions:

Assumption 3.1. The distribution of observations at all local sensors follow either

f0 or f1. The PDFs under Hθ, θ ∈ {0, 1} are known by all local sensors and by the

fusion center.
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Assumption 3.2. Each local sensor makes decisions based only on its own obser-

vations. No feedback information from the fusion center is made available to local

sensors.

Assumption 3.3. The fusion center makes its final decision based only on the re-

ported information from local sensors, including the absence of reporting.

Remark 3.3 (Person-by-person optimal strategy [35]). Under Assumptions

3.2, and 3.3, the person-by-person optimal decision strategy which minimizes the over-

all detection delay subject to error probabilities is to apply likelihood-ratio tests at both

local sensors and fusion center. Together with Assumption 3.1, it follows that such

likelihood-ratio based tests are SPRTs.

In contrast to the work in [35], we additionally introduce communication cost

constraint, which can be satisfied by adjusting the relationship between local sensor

and fusion center threshold values.

3.4.1 Local sensing strategy

A final decision is made at the fusion center based on received sensing reports from

local sensors. In order to minimize the overall detection delay, each sensing report

ought to be generated as quickly as possible. Thus, the optimization problem local

to each sensor is of the form

minimize
η

E{v},

subject to PFAL ≤ αL and PMDL ≤ βL, (3.11)
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where v represents the delay for a local sensor to generate a sensing report. PFAL and

PMDL are the local false alarm and missed detection probabilities, constrained to αL

and βL, respectively.

Proposition 3.1. Under Assumptions 3.1, 3.2, and 3.3, the SPRT is locally person-

by-person optimal whose thresholds are determined from the global problem constraints.

Proof. Consider the mth local sensor, with Pm
FAL, Pm

MDL, 1 ≤ m ≤ M incurred by

the overall constraints, and suppose that the decision rules of all the other local

sensors, as well as that of the fusion center are fixed. According to Assumptions

3.1 and 3.2, as well as Theorem 2.1, among all tests which achieve prescribed error

probability constraints, the average delay of SPRT is minimum. In the case that

sensor m applies a local test other than the SPRT, a greater local detection delay is

obtained, and therefore from Assumption 3.3, the cost of the overall detection system

increases.

Thus, the optimal solution to (3.11) can be achieved by tracking the likelihood

ratio statistics at each local sensor via

gk =
k∑
i=1

log
f1(Xi)

f0(Xi)
(3.12)

and forming a likelihood ratio test: a local sensor forwards a report to the fusion

center whenever the test statistic gk is significant, i.e., exceeds predefined threshold.

Let a local sensor decision rule at time k be given by

Tk =


0, gk ∈ (a, b),

1, gk /∈ (a, b),

(3.13)
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where a < 0 < b are local thresholds. When Tk = 1 the local statistic is reported to

the fusion center; while when Tk = 0, local sensing task continues without sending a

report to the fusion center. After a sensing report is forwarded to the fusion center,

the local memoryless sensor reinitiates and repeats its sequential test until the final

decision at the fusion center is made. With predefined local sensing threshold values

a < 0 < b, data transmitted to the fusion center through each sensing report is

independent and identically distributed (IID) random variables conditioned on each

hypothesis, i.e.,

H0 : R1,R2,R3... ∼ R0,

H1 : R1,R2,R3... ∼ R1, (3.14)

where Rk = gk|Tk 6=0 and Rθ, θ ∈ {0, 1} is the conditional probability density function

(PDF) of information contained in a sensing report under Hθ, θ ∈ {0, 1}.

Let tn denote the time slot that a local sensor sends the n-th sensing report to

the fusion center. We have incurred a delay to generate the n-th local sensing report,

i.e., the delay of the n-th local sequential test is given by

Tn = tn − tn−1, (3.15)

with t0 = 0. Since a local sensor applies its local test repeatedly using fixed threshold

values, a < 0 < b, and the test statistic is reset to zero when test thresholds are

reached (when a local report is forwarded), we can straightforwardly determine that

the delays Tn to generate reports at any certain local sensor are IID random variables
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conditioned on each hypothesis, i.e.,

H0 : T1,T2,T3... ∼ T0,

H1 : T1,T2,T3... ∼ T1, (3.16)

where Tθ, θ ∈ {0, 1} is the conditional probability mass function (PMF) of the report-

generating delay at a local sensor, which is determined by fθ, θ ∈ {0, 1} and the values

of a and b. In general, Tθ, θ ∈ {0, 1} is not a memoryless discrete time distribution,

i.e., {Tk} is not geometrically distributed. Let Gθ,n denote the distribution of the

local test statistic after n observations are taken. Then

Gθ,n(y) =

b∫
a

Gθ,n−1(s)zθ(y − s)ds, n > 1, (3.17)

Tθ,u(n) =

b∫
a

Gθ,n−1(s)(1− Zθ(b− s))ds, n > 1, (3.18)

Tθ,l(n) =

b∫
a

Gθ,n−1(s)Zθ(a− s)ds, n > 1, (3.19)

with

Gθ,1(y) = zθ(y), Tθ,u(1) = 1− Z(b), and Tθ,l(1) = Z(a), (3.20)

where zθ(s) and Zθ(s) are the probability density function (PDF) and cumulative

distribution function (CDF) of log f1(X1)
f0(X1)

under Hθ, θ ∈ {0, 1}, respectively. In (3.16)

and (3.17), Tθ,u(n) and Tθ,l(n) represent the probability that the local test delay equals

n time slots and the local statistic exceeds upper and lower boundaries, respectively.

Thus, the probability that local report-generating delay is equal to n can be expressed
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as,

Tθ(n) = Tθ,u(n) + Tθ,l(n). (3.21)

It is straightforward that the data contained in each sensing report can be used to

imply the true hypothesis, since the statistical properties of the reported data when

H0 or H1 is true are different. Moreover, the distribution of the report-generating

delay usually varies under different hypotheses as well, and therefore can also be

applied to infer the true hypothesis. Thus, the reported information by local sensors

consists of the transmitted data and the reporting time, both of which ought to be

utilized in the fusion center test.

3.4.2 Fusion center strategy

Following the person-by-person optimization methodology, we have so far established

the optimal hypothesis testing strategy at each local sensor, independently of the

fusion center and other local sensors. We now investigate the optimal solution to

the fusion center test when local sensing threshold values are fixed. As is shown

previously, when local detection strategies are fixed, the sensing reports received by

the fusion center are time dependent. The sequence {r1, ..., rk} can be therefore

viewed as dependent observations at the fusion center. As discussed in Chapter 2,

the SPRT based on dependent observations is of the form

Dk =


0, uk ∈ (Ak, Bk),

1, uk /∈ (Ak, Bk),

(3.22)
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with the test statistic given by

uk = log
P1(r1, ..., rk)

P0(r1, ..., rk)
, (3.23)

where Pθ, θ ∈ {0, 1} is the joint PDF of received sensing information at the fusion

center up to time k and Ak < 0 < Bk are time varying threshold values. Since

reported information across sensors are independent conditioned on each hypothesis,

we have

uk =
M∑
m=1

log
Pm1 (rm1 , r

m
2 , ..., r

m
k )

Pm0 (rm1 , r
m
2 , ..., r

m
k )
, (3.24)

where Pmθ , θ ∈ {0, 1} is the joint PDF of reported information from sensor m. Let

Nm
k denote the number of reports already sent to the fusion center by sensor m at

time k. The sequence {rm1 , ..., rmk } from sensor m can be partitioned into Nm
k + 1

subsequences, i.e., {rm1 , ..., rmtm1 }, {r
m
tm1 +1, ..., r

m
tm2
}, ..., {rmtNm

k
+1, ..., r

m
k }. We define the

first Nm
k subsequences as the data subsequences (DSs), and the left over subsequence

after removing DSs from the sequence, {rm1 , ..., rmk }, as the tail subsequence (TS).

Note that if rmk = 0, there is no TS and all subsequences are of type DS.

Since the local test statistic is reset each time a report is transmitted, the re-

ported statistics of these subsequences are mutually independent conditioned on each

hypothesis, i.e.,

Pmθ (rm1 , ..., r
m
k ) = Pmθ (rm1 , ..., r

m
tm1

)× Pmθ (rmtm1 +1, ..., r
m
tm2

)

× ...× Pmθ (rmtNm
k

+1, ..., r
m
k ). (3.25)

By definition, we notice that only the last element in each DS is non-zero, which is
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the information contained in the sensing report. Thus, the joint PDF of each DS in

(3.25) can be expressed as

Gmθ (1)
∆
= Pmθ (rm1 , ..., r

m
tm1

) = Pθ(T
m
1 = tm1 )Pθ(R

m
1 = rmtm1 )

= Tθ(T = tm1 )Rθ(R = rmtm1 ),

Gmθ (2)
∆
= Pmθ (rmtm1 +1, ..., r

m
tm2

) = Pθ(T
m
2 = tm2 − tm1 )Pθ(R

m
2 = rmtm2 )

= Tθ(T = tm2 − tm1 )Rθ(R = rmtm2 ),

...

Gmθ (Nm
k )

∆
= Pmθ (rmtmNm

k
−1

+1, ..., r
m
tmNm
k

) = Pθ(T
m
Nmk

= tmNmk − t
m
Nmk −1)Pθ(R

m
Nmk

= rmtmNm
k

)

= Tθ(T = tmNmk − t
m
Nmk −1)Rθ(R = rmtmNm

k

),

(3.26)

where Pθ is the probability conditioned on θ and the last equality in each term of

(3.26) is obtained by using the PDFs from (3.14) and (3.16). By substituting (3.25)

and (3.26) into (3.23), we obtain fusion center test statistic at time slot k as

uk =
M∑
m=1

Nmk∑
n=1

log
Gm1 (n)

Gm0 (n)
+ log

T1(T > k − tNmk )

T0(T > k − tNmk )
. (3.27)

From (3.26) and (3.27), one can notice that the fusion center test utilizes not only the

data contained in sensing reports, but also the times when these reports are received.

The fusion center test statistic (3.27) is updated at each time slot and compared

with the fusion center thresholds. Since Wald’s original equations are valid with

dependent observations [72], the fusion center error probability constraints can be
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satisfied by applying the following constant thresholds:

A ≤ log
βC

1− αC
and B ≥ log

1− βC
αC

, (3.28)

where A < 0 < B are constants. We now prove that the proposed fusion center

sequential test which computes the statistic (3.27) and compares it to the constant

threshold values (3.28), is asymptotically optimal in the following sense:

Theorem 3.1. Let F (αC , βC) denote the class of all fusion center tests based on

{r1, r2, ..., rk} satisfying PFAC ≤ αC and PMDC ≤ βC, and let (τ, δ) ∈ F (αC , βC)

denote a test with stopping time τ and decision rule δ. The stopping time of fusion

center sequential test with statistic (3.27) and thresholds (3.28) can be expressed as

τA,B = inf{k ≥ 1 : uk ≤ A or uk ≥ B}, (3.29)

and such a test is asymptotically optimum in the sense that for all 0 < ε < 1,

lim
αC+βC→0

inf
(τ,δ)∈F (αC ,βC)

Pθ(τ > ετA,B) = 1, θ ∈ {0, 1}, (3.30)

where τA,B is the stopping time of the fusion center test with statistic uk and thresholds

A < 0 < B.

Proof. Let uk,θ denote the fusion center test statistic at time k when Hθ, θ ∈ {0, 1},

is true. With predefined local test thresholds, Gmθ (n), n = 1, 2, ..., defined in (3.26)

have common mean and variance, and by the Weak Law of Large Numbers, the fusion

center statistic, uk, is governed by
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uk,θ
k

i.p.→ λθ, θ ∈ {0, 1}, when k →∞. (3.31)

where λ0 < 0 < λ1 are constants. Let ε′ > 1 such that εε′ < 1, and τN is the greatest

integer which satisfies

τN ≤ εmin{| logαC/λ1|, | log βC/λ0|}. (3.32)

The reported information {r1, r2, ..., rk} can be viewed as a sequence of random vari-

ables defined on the same underlying measurable space (Ω,F ). Let P denote the

probability measure on (Ω,F ). For any (τ, δ) ∈ F (αC , βC), we have

αC =

∫
τ<∞, (τ,δ) rejects H0

exp(−uτ,0)dP,

≥
∫
τ≤τN , uτ,0≤ε′λ1τN , (τ,δ) rejects H0

exp(−uτ,0)dP,

≥ exp(−ε′λ1τN)P (τ ≤ τN , uτ,0 ≤ ε′λ1τN , (τ, δ) rejects H0). (3.33)

From (3.32) we have ε′λ1τN ≤ εε′| logαC |. As logαC < 0, we can further have

−ε′λ1τN ≥ εε′ logαC , which by substituting into (3.33), one can further obtain

αC ≥ exp(εε′ logαC)P (τ ≤ τN , uτ,0 ≤ ε′λ1τN , (τ, δ) rejects H0),

= αεε
′

C P (τ ≤ τN , uτ,0 ≤ ε′λ1τN , (τ, δ) rejects H0), (3.34)

from which follows

αC
αεε
′

C

= α1−εε′
C ≥ P (τ ≤ τN , uτ,0 ≤ ε′λ1τN , (τ, δ) rejects H0). (3.35)
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By adding P (τ ≤ τN , uτ,0 > ε′λ1τN , rejects H0) to both sides of (3.35), we have

P (τ ≤ τN , (τ, δ) rejects H0) ≤ α1−εε′
C + P (τ ≤ τN , uτ,0 > ε′λ1τN , rejects H0),

≤ α1−εε′
C + P (τ ≤ τN , uτ,0 > ε′λ1τN),

≤ α1−εε′
C + P (max

j≤τN
uj,0 > ε′λ1τN). (3.36)

Using a similar argument, we can also obtain that

P (τ ≤ τN , (τ, δ) rejects H1) ≤ β1−εε′
C + P (max

j≤τN
uj,1 > ε′λ0τN). (3.37)

By combining (3.36) and (3.37), which are mutually exclusive, it follows that

sup
(τ,δ)∈F (αC ,βC)

P (τ ≤ τN) ≤ α1−εε′
C + β1−εε′

C + P (max
j≤τN

uj,0 > ε′λ1τN)

+ P (max
j≤τN

uj,1 > ε′λ0τN). (3.38)

As αC + βC → 0, we have τN → ∞ and therefore obtain uτN ,0 → λ0τN and uτN ,1 →

λ1τN from (3.31), which by substituting into (3.38), we obtain

sup
(τ,δ)∈F (αC ,βC)

P (τ ≤ τN)→ 0. (3.39)

From (3.32) and (3.39), we have that as αC + βC → 0,

inf
(τ,δ)∈F (αC ,βC)

P (τ > εmin{| logαC/λ1|, | log βC/λ0|})→ 1. (3.40)

Moreover, as αC +βC → 0, the fusion center thresholds (3.28) converge to A = log βC

and B = log 1/αC . Thus, together with (3.31) we also have that τA,B converges to
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min{| logαC/λ1|, | log βC/λ0|} in probability, i.e.,

τA,B
min{| logαC/λ1|, | log βC/λ0|}

i.p.→ 1, when αC + βC → 0, (3.41)

and (3.30) follows from (3.40) and (3.41).

Similar arguments to the proof of Theorem 3.1 also appear in a different context in

[73]. However, the proof in [73] that the generalized SPRT with constant thresholds

(3.28) is asymptotically optimal assumes stability of the test statistic. In Theorem

3.1, stability of the test statistic is established.

3.4.3 Determination of local thresholds

With constant fusion center threshold values A < 0 < B, we can further investigate

the detection delay of the sensing system. Let uτ denote the fusion center statistic

when a final decision is made. We have from (3.27), the expected fusion center test
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statistic under Hθ

Eθ{uτ} = Eθ

[
M∑
m=1

Nmτ∑
n=1

log
Gm1 (n)

Gm0 (n)
+ log

T1(T > τ − tNmτ )

T0(T > τ − tNmτ )

]
,

=
M∑
m=1

Eθ{Nm
τ }Eθ{log

Gm1 (1)

Gm0 (1)
}+ Eθ{log

T m1 (T > τ − tNmτ )

T m0 (T > τ − tNmτ )
},

=
M∑
m=1

Eθ{Nm
τ }
(
Eθ{log

T m1 (T = tm1 )

T m0 (T = tm1 )
}+ Eθ{log

Rm
1 (R = rmtm1 )

Rm
0 (R = rmtm1 )

}
)
,

+ Eθ{log
T m1 (T > τ − tNmτ )

T m0 (T > τ − tNmτ )
},

=
M∑
m=1

Eθ{Nm
τ }Cmθ + Dm

θ , θ ∈ {0, 1}, with

Cmθ
∆
= Cmθ,t + Cmθ,d,

Cmθ,t
∆
=

∞∑
n=1

T mθ (n) log
T m1 (n)

T m0 (n)
,

Cθ,d
∆
=

∫ ∞
−∞
Rm
θ (y) log

Rm
1 (y)

Rm
0 (y)

dy,

Dm
θ

∆
=

∞∑
n=1

T mθ (T = n) log
T m1 (T > n)

T m0 (T > n)
, (3.42)

where Cmθ is the expected contribution of likelihood ratio to the fusion center test

statistic after a DS is received from sensor m. The contribution of Cmθ,t is attributed

to the time dependency of the reporting time, while the contribution of Cmθ,d is due to

the data contained in the sensing report. Dm
θ represents the expected contribution of

the TS of sensor m. Let Eθ{τ} denote the expected delay of the fusion center test

under Hθ. We have

Eθ{τ} = Eθ{vm}Eθ{Nm
τ }. (3.43)
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We further assume that when the fusion center test stops, the fusion center test

statistic reaches the threshold values with equality. Then,

Eθ{uτ} = (1− βθ)A+ βθB, (3.44)

where β0 = αC and β1 = 1 − βC . By substituting (3.43) and (3.44) into (3.42), we

can further have the expected delay of the fusion center test expressed as

Eθ{τ} =

(
Eθ{uτ} −

M∑
m=1

Dm
θ

)(
M∑
m=1

Cmθ
Eθ{vm}

)−1

, θ ∈ {0, 1}. (3.45)

The total communication cost constraint can be then expressed as

E{R} =
M∑
m=1

Eθ{Nm
τ }wm =

M∑
m=1

Eθ{τ}
Eθ{vm}

wm ≤ κ. (3.46)

By substituting (3.45) into (3.46), we have

M∑
m=1

wm

Eθ{vm}
≤ κ

(
Eθ{uτ} −

M∑
m=1

Dm
θ

)−1 M∑
m=1

Cmθ
Eθ{vm}

,

≤ κ

Eθ{uτ}
M∑
m=1

Cmθ
Eθ{vm}

. (3.47)

When H1 is true, by definition we have 0 < Dm
1 << Cm1 , and the detection delay

E1{τ} decreases when
∑M

m=1 C
m
1 /E1{vm} increases. Combining this property with
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(3.47), the target optimization problem expressed as

maximize
αmL βmL

M∑
m=1

Cm1
E1{vm}

,

subject to
M∑
m=1

wm

E1{vm}
≤ κ

E1{uτ}
M∑
m=1

Cm1
E1{vm}

. (3.48)

As local sensors cannot communicate one another, and local detection strategies are

optimized individually, the local threshold values of each local sensor are set to satisfy

maximize
αmL βmL

Cm1
E1{vm}

,

subject to
wm

E1{vm}
≤ κ

E1{uτ}
Cm1

E1{vm}
. (3.49)

Following a similar argument when H0 is true and noting that the Cm0 term defined

in (3.42) is negative, we obtain the optimization problem

maximize
αmL βmL

− Cm0
E0{vm}

,

subject to
wm

E0{vm}
≤ κ

E0{uτ}
Cm0

E0{vm}
. (3.50)

By combining (3.49) and (3.50), and substituting (3.44), we have

maximize
αmL βmL

∣∣∣∣ Cmθ
Eθ{vm}

∣∣∣∣ ,
subject to

wm

Eθ{vm}
≤ κ

(1− βθ)A+ βθB

Cmθ
Eθ{vm}

. (3.51)

The optimum threshold values which solve (3.51) can be found with the help of the

following:
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Lemma 3.1. Cθ and Eθ{v}, θ ∈ {0, 1}, are monotone functions of each of aL and

βL. As αL (or βL) decreases, |Cθ| increases, while |Cθ/Eθ{v}| decreases.

Proof. Cθ and Eθ{v} can be determined by local threshold values a < 0 < b. Since a

and b can be expressed by αL and βL using

a ≤ log
βL

1− αL
and b ≥ log

1− βL
αL

, (3.52)

Cθ and Eθ{v} can be expressed as functions of αL and βL.

Let aθ and bθ denote the conditional PDF of transmitted data when local statistic

reaches the lower and upper boundary, respectively. We have

R0 = αLb0 + (1− αL)a0,

R1 = βLa1 + (1− βL)b1. (3.53)

By substituting (3.53) into (3.42), we have

C0,d =

∫ ∞
−∞

[αLb0(y) + (1− αL)a0(y)] log
βLa1(y) + (1− βL)b1(y)

αLb0(y) + (1− αL)a0(y)
dy,

=

∫ ∞
−∞

[αLb0(y) log(1− βL)b1(y) + (1− αL)a0(y) log βLa1(y)

− αLb0(y) logαLb0(y)− (1− αL)a0(y) log(1− αL)a0(y)]dy,

= αL log
1− βL
αL

+ (1− αL) log
βL

1− αL
+ (1− αL)A0 + αLB0, (3.54)

with

A0 =

∫ a

−∞
a0(y) log

a1(y)

a0(y)
dy and B0 =

∫ ∞
b

b0(y) log
b1(y)

b0(y)
dy, (3.55)

where the second equality in (3.54) is based on the fact that aθ(y) = 0 when y > a
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and bθ(y) = 0 when y < b. As the quantity C0,d is dominated by the first two terms

in the last equality of (3.54), it is straightforward to obtain that |C0,d| increases with

decreasing aL and βL. Moreover, as E0{v} is lower bounded by

E0{v} ≥
1

c0

[
αLlog

1− βL
αL

+ (1− αL)log
βL

1− αL

]
, (3.56)

where c0 = E0{log f1(X1)
f0(X1)

}. With (3.54) and (3.56), we obtain

∣∣∣∣ C0,d

E0{v}

∣∣∣∣ ≥ −c0

∣∣∣∣1 +
(1− αL)A0 + αLB0

E0{v}

∣∣∣∣ . (3.57)

Thus, when αL and βL decrease, E0{v} increases, and therefore decreasing |C0,d/Eθ{v}|.

Using a similar argument, when αL and βL decrease, |C1,d| increases and |C1,d/Eθ{v}|

decreases. Lemma 3.1 then follows from the fact that Cθ is dominated by Cθ,d.

Theorem 3.2. The optimal local threshold values am and bm, m = 1, ...,M satisfy

am ≤ log
βmL

1− αmL
and bm ≥ log

1− βmL
αmL

, (3.58)

and solve (3.51) by satisfying

Cmθ = [(1− βθ)A+ βθB]wmκ−1, θ ∈ {0, 1}, (3.59)

with β0 = αC and β1 = 1− βC.

Proof. From Lemma 3.1, |Cmθ /Eθ{vm}| increases with αmL and βmL , and the maximum

value of |Cmθ /Eθ{vm}| is obtained when αmL and βmL are maximized. Since |Cmθ | de-

creases with αmL and βmL , the maximum values of αmL and βmL are obtained when (3.59)
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is satisfied with equality.

Summarizing the threshold determination procedure, the local thresholds am and

bm are calculated by (3.58), where αmL and βmL are obtained by solving M sets of

nonlinear equations (3.59), each in the two variables αmL and βmL . Cθ is calculated from

(3.42), where the distributions of report-generating delay, Tθ, and reported data, Rθ,

are required. Tθ can be obtained from either recursively calculating the convolution

in (3.17) or applying off-line Monte Carlo experiments. Rθ can also be obtained from

off-line Monte Carlo experiments. The proposed decentralized hypothesis testing

procedure is summarized by Algorithm 1.

Algorithm 1 Communication-efficient decentralized detection.

1: procedure
2: gm ← 0, m = 1, 2, ...,M .
3: while u ∈ (A,B) do
4: rm ← 0, m = 1, 2, ...,M .
5: for m = 1 to M do . Local sensing strategy.
6: if gmk /∈ (am, bm) then rmk ← gmk , gmk ← 0.

7: else gm ← gm + log
fm1 (Xm

k )

fm0 (Xm
k )

.

8: end if
9: end for
10: Dm ← 0, m = 1, 2, ...M.
11: for m = 1 to M do . Fusion center strategy.

12: if rm 6= 0 then Cm ← Cm + log
Rm1 (rm)

Rm0 (rm)
+ log

T m1 (tm)

T m0 (tm)
.

13: else tm ← tm + 1, Dm ← Dm + log
T m1 (t>tm)

T m0 (t>tm)
.

14: end if
15: end for
16: u← Cm + Dm.
17: k ← k + 1.
18: end while
19: if u ≥ B then H1 is true., . Decision making.
20: else H0 is true.
21: end if
22: end procedure
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3.5 Performance analysis

In the proposed formulation, the number of communications between local sensors

and the fusion center is constrained. Unlike a centralized detection scheme, where

observed information is directly sent to the fusion center, the final decision of the

proposed algorithm is made based on a limited number of sensing reports. As intro-

duced in Chapter 2, we investigate the delay performance of the proposed algorithm

through the asymptotic relative efficiency (ARE) [67]. The ARE of the proposed

detection scheme with respect to the centralized scheme can be expressed as

AREθ(αC , βC , κ) = lim
H1→H0

EC
θ {τ}
Eθ{τ}

, θ ∈ {0, 1}, (3.60)

where EC
θ {τ} denotes the average detection delay of the sequential probability ratio

test, which is the delay-optimum centralized scheme,

EC
θ {τ} =

1

dθ

[
βθlog

1− βC
αC

+ (1− βθ)log
βC

1− αC

]
, (3.61)

with

dθ = Eθ{log
f1(X1

1 , ..., X
M
1 )

f0(X1
1 , ..., X

M
1 )
}, θ ∈ {0, 1}, (3.62)

where fθ(X
1, ..., XM) denotes the joint PDF of local observations under Hθ, θ ∈

{0, 1}. Since local observations across sensors are independent conditioned on each

hypothesis,

dθ = Eθ{log
f 1

1 (X1
1 )

f 1
0 (X1

1 )
+ ...+

fM1 (XM
1 )

fM0 (XM
1 )
} =

M∑
m=1

dmθ . (3.63)
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It should be noted that as H1 approaches H0, the detection delay of the local test

approaches infinity, and the excess value over test thresholds vanishes. Therefore the

use of (3.61) in the calculation of (3.60) does not rely on the assumption that excess

over threshold values are negligible. By substituting (3.59) into (3.45), we can further

express the detection delay of the proposed algorithm

Eθ{τ} = κ

(
M∑
m=1

wm

E{vm}

)−1

(3.64)

By substituting (3.61) and (3.64) into (3.60), we obtain

AREθ(αC , βC , κ) = κ−1d−1
θ

[
βθlog1−βC

αC
+ (1− βθ)log βC

1−αC

]
×∑M

m=1w
mdmθ

[
αmθ log

1−βmL
αmL

+ (1− αmθ )log
βmL

1−αmL

]−1

, (3.65)

where αm0 = αmL and αm1 = 1−βmL . An alternative ARE analysis method is introduced

by Chernoff [68], when error probabilities tend to zero, i.e., αC + βC → 0. However,

as local false alarm and missed detection probabilities of the proposed algorithm are

usually not related in closed form, we may not able to simplify the ARE expression

to enable analysis of this problem.

3.6 Numerical results

Simulation results were conducted to illustrate the performance tradeoffs. We con-

sider observations at each local sensor to be IID Gaussian sequences with mean 0

and variance 1 under H0, and mean 0.1 and variance 1 under H1. Without much

loss in generality, only a single example of H0 vs H1 PDFs are used throughout the

results since the fusion center test threshold values are independent of these PDFs.
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However local sensor threshold values are solutions to nonlinear equations that are

functions of the PDFs, though the methodology is the same. Other than that, it is

only the likelihood ratio test statistics that need to be modified for different exam-

ples. The prior probability that H0 is true is π0 = 0.5, and αC = βC is considered.

Note that for a different setup of local observation distributions, the fusion center test

threshold values stay the same, as they depend only on the predefined false alarm

and missed detection constraints. However, local test threshold values may change as

nonlinear equations (3.59) are changed. We assume that local sensors transmit binary

information to the fusion center through sensing reports, and unit cost to transmit

a single report from different sensors, i.e., wm = 1, m = 1, ...,M . The false alarm

and missed detection probabilities, average detection delay, and the distribution of

report-generating delay are all calculated based on 105 Monte Carlo trials.
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Figure 3.2: ARE1 of Algorithm 1 with respect to the centralized scheme versus com-
munication cost constraint, κ, with M = 2 local sensors.

Figure 3.2 shows ARE versus κ when H1 is true and βC = 0.001 when M = 2
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local sensors are applied. The ARE of the Algorithm 1 increases as the constraint on

communications is relaxed, i.e., κ is increased. This is expected since allowing more

communications between local sensors and the fusion center reduces information loss

during local sensing report transmission. We also investigate the ARE of Algorithm

1 when different numbers of local sensors are applied. As in Figure 3.3, the ARE of

Algorithm 1 with respect to the centralized scheme is shown. One can observe that

ARE is reduced as more local sensors are utilized under the same constraint, κ, i.e.,

more observations in the overall system need to be processed and quantized to obtain

the same performance.
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Figure 3.3: ARE1 of Algorithm 1 with respect to the centralized scheme versus com-
munication cost constraint, when αC = 0.005 and βC = 0.001.

In Figure 3.4, the effect of false alarm probability on ARE is investigated when

the number of local sensors, missed detection probability and communication cost

constraints are held constant, i.e., M = 2, βC = 0.001, κ = 10. As shown, the ARE of

Algorithm 1 decreases as the false alarm probability increases. This is expected: when
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the false alarm probability at the fusion center increases, the false alarm probabilities

of local sensors’ sequential tests increase as well. Since the transmitted sensing reports

become less reliable, the ARE of Algorithm 1 decreases.
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Figure 3.4: ARE1 of Algorithm 1 with respect to the centralized scheme versus false
alarm probability, when M = 2, βC = 0.001.

In most existing approaches to decentralized hypothesis testing, the fusion center

only utilizes the data contained in sensing reports for the decision making. However,

the times at which these sensing reports are received can also infer the true hypothesis.

In the proposed work, the information from both the statistics and arrival times of

sensing reports are applied at the fusion center. To further investigate the attribution

in the reporting time information, we compare the performance of Algorithm 1 with

that using a simplified fusion statistic, i.e.,

uk =
M∑
m=1

Nmk∑
n=1

log
P1(Rm

n = rmtmn )

P0(Rm
n = rmtmn )

. (3.66)
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Comparing (3.66) with (3.27), one can notice that the statistic above only fuses

the data contained in sensing reports. We refer to this strategy as the dependency

removed (DR) algorithm. The DR algorithm does not necessarily preserve asymptotic

person-by-person optimality, and is only used for the comparison with the proposed

algorithm. Through such comparison, the contribution of the time dependency terms

to the detection performance can be shown in different situations.

In Figure 3.4, the ARE performance of both Algorithm 1 and the DR algorithm

are presented. One can notice that by taking the time dependency into account,

the ARE of Algorithm 1 increases. Moreover, the performance gain from the time

dependency contribution is more significant when the differences between αC and

βC are greater. This phenomenon occurs because when values of αC and βC are

further apart, the distributions of report-generating delay under different hypotheses

are more distinguishable.
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Figure 3.5: Average detection delay versus false alarm constraint, using different
communication cost constraints.
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In Figure 3.5, the relationship between false alarm probability and expected detec-

tion delay is illustrated, where the missed detection probability is fixed to βC = 0.001

and M = 2 local sensors are applied. As the false alarm probability increases, the

overall detection delay decreases. One can also notice that a shorter overall detec-

tion delay is achieved when the communication constraint κ is increased, since local

sensor error probability constraints are relaxed, leading to a shorter delay for local

sensor tests. The contribution of time dependency to the delay performance can be

observed.
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Figure 3.6: Average detection delay versus false alarm constraint, using different
numbers of local sensors.

Figure 3.6 investigates the delay performance when different numbers of local

sensors are deployed, i.e., M = 2 and 4. Both the results with and without time

dependency are presented. Although shorter delay is achieved when deploying more

local sensors, performance improvement is not proportional to the number of applied

sensors. More specifically, the average detection delay achieved using four sensors is
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greater than half of the average delay using two sensors, which is consistent with the

ARE of proposed algorithm decreasing as M increases.

3.7 Summary

A decentralized hypothesis testing framework is proposed. In addition to the criterion

of detection delay with constrained error probabilities, we introduce a new commu-

nication cost constraint. Based on the new formulation, the energy consumption

and transmission overhead of sensing devices can be controlled. An asymptotically

person-by-person optimum algorithm is developed to solve the formulated optimiza-

tion problem, where the fusion center utilizes not only the data contained in local

sensing reports, but also the times at which these reports are received. Asymptotic

relative efficiency of proposed algorithm with respect to the centralized detection

scheme provides insights to various trade-offs encountered in the design and perfor-

mance of this sensor network.
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Chapter 4

Decentralized hypothesis testing with Poisson

model

4.1 Introduction

In the previous chapter, it is shown that when local sensors apply SPRTs and local

threshold values are fixed, the observations at the fusion center are time dependent.

The proposed fusion test not only applies the reported statistics sent by local sensors

but also utilizes the reporting times when a report is forwarded by local sensors. From

the simulation results in the previous chapter, one can notice that the performance

gain by exploiting the reporting times is not significant, especially when false alarm

and missed detection probabilities are close to one another. Moreover, the distribution

of the report-generating delay can be obtained from either recursively calculating the

convolution in (3.17) or applying off-line Monte Carlo experiments, both of which

consume considerable computational resource of the sensing system. This motivates

the idea of a more conventional form of the fusion center strategy, which only fuses

the statistics contained in the local sensor reports. As the dependency of the report-

generating delay is ignored, the arrival time of sensing reports is assumed memoryless,
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and therefore the transmissions of local reports is modeled as a Poisson process.

4.2 Problem formulation

We consider the same distributed sensing system in Figure 3.1, with unit cost to

transmit a single report from different sensors, i.e., wm = 1, for all m = 1, ...,M .

Each sensor takes observations sequentially and forwards sensing reports to the fusion

center where the final decision is made. Let Xk denote the observation obtained by

a certain local sensor at time slot k. We consider a binary hypothesis problem where

Xk has either the common probability density function (PDF) f0 or f1, i.e.,

H0 : X1, X2, ... ∼ f0,

H1 : X1, X2, ... ∼ f1, (4.1)

with known prior probabilities

P (H0) = π0 and P (H1) = 1− π0. (4.2)

After taking each observation, a local sensor decides whether it is worth sending a

report to the fusion center. Let Y m
k ∈ {0, 1} denote the reporting decision indicator

of a certain local sensor at time k.

Yk = ςk(gk−1, Xk), k = 1, 2... (4.3)

where gk−1 is the cumulative statistic based on observations before time k, i.e. {X1, ...,

Xk−1}, and ςk is the local decision policy at time k. If Yk = 1, the local sensor
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forwards a local sensing report to the fusion center for a final decision. If Yk = 0,

the local sensor does not send a report but continues taking observations. Reported

information by the local sensor is the accumulated statistic at time k and takes the

form

rk =


0, Yk = 0,

gmk , Yk = 1,

(4.4)

where rk = 0 means that no report is transmitted from the local sensor to the fusion

center. After transmitting a sensing report to the fusion center, each local sensor

test statistic is reinitialized to zero. It is not necessary for a local sensor to draw a

conclusion on a hypothesis. Only if a local sensor makes a decision in favor of either

hypothesis does it forward a report to the fusion center.

At the fusion center, sensing reports from local sensors are received sequentially,

and can be viewed as the observations of the fusion center. The cumulative statistic

at the fusion center is updated based on reported sensed information,

lk = ξ(lk−1, rk), k = 1, 2..., (4.5)

with ξ represents the statistic update function and rk is the reported sensing informa-

tion at the kth time slot. Based on the statistic lk, the fusion center makes decisions

on whether to stop and make a final decision on H0 or H1 or to continue receiving

sensing reports, i.e.,

Gk = %(lk), n = 1, 2..., (4.6)

where % is the decision policy. Gk ∈ {0, 1} denotes the stopping decision of the fusion
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center at time k. If Gk = 1, the fusion center stops and claims H0 or H1. If Gk = 0,

the detection task continues.

We are interested in the detection strategy that minimizes the overall expected

detection delay under error probability and communication cost constraints, i.e.,

minimize
ς %

E{τ},

subject to PFAC ≤ αC , PMDC ≤ βC ,

and E{R} ≤ κ, (4.7)

where τ represents the stopping time of the detection rule, PFAC and PMDC denote

false alarm and missed detection probability, constrained to αC and βC , respectively.

R is the number of sensing reports received by the fusion center, i.e., number of

communications, during the detection task and κ is an integer communication cost

constraint.

4.3 Proposed algorithm

In the sensing system, local sensors cannot communicate with one another, and the

fusion center only provides minimum feedback when a final decision is made. Thus,

sensing devices cannot optimize their strategies cooperatively; the best they can do

is to individually optimize their strategies based on local information. Thus, the

optimization problem local to each sensor is of the form

minimize
η

E{v},

subject to PFAL ≤ αL and PMDL ≤ βL, (4.8)
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where v represents the delay for a local sensor to generate a sensing report. PFAL and

PMDL are the local false alarm and missed detection probability, constrained to αL

and βL, respectively. Here, we also apply Assumptions 3.1, 3.2, and 3.3 in Chapter 3,

and from Proposition 3.1, we have that the optimal solution to (4.8) can be achieved

by tracking the likelihood ratio statistics at each local sensor via

gk =
k∑
i=1

si with si = log
f1(Xi)

f0(Xi)
. (4.9)

A local sensor forwards a report to the fusion center whenever the test statistic gk is

significant, i.e., exceeds predefined thresholds,

Yk =


0, gk ∈ {a, b},

1, gk /∈ {a, b},
(4.10)

where a < 0 < b are local thresholds. After a sensing report is forwarded to the

fusion center, the local sensor repeats its sequential test until the final decision at the

fusion center is made. We assume that when the local statistic exceeds the thresholds

a and b, the excess value over the threshold is negligible. As discussed in Chapter 2,

this assumption is accurate when the number of observations taken at local sensors

is large. Using the Proposition 2.1 in Chapter 2, the local threshold values and error

probabilities are related by

a = log
βL

1− αL
and b = log

1− βL
αL

. (4.11)

sdb2
Highlight

sdb2
Highlight

sdb2
Highlight



4.3. PROPOSED ALGORITHM 61

We consider the simpler case where error probability constraints are identical at

each local sensor, so that the sensing results reported from local sensors are equally

reliable. Following Proposition 2.2 in Chapter 2, the average delay to generate each

local sensing report can be expressed as

Eθ{v} =
1

dθ

[
αθlog

1− βL
αL

+ (1− αθ)log
βL

1− αL

]
,

(4.12)

where α0 = αL and α1 = 1 − βL. Eθ{•} denotes conditional expectation under the

hypothesis Hθ, θ ∈ {0, 1}, and dθ is given by

dθ = Eθ{log
f1(X1)

f0(X1)
}, θ ∈ {0, 1}. (4.13)

The average rate that a fusion center receives sensing reports is given by

λθ =
M

Eθ{v}
. (4.14)

As established in the previous chapter, the performance gain by applying the depen-

dency of local sensor reporting times is limited, especially when the false alarm and

missed detection probability constraints are close to one another. Thus, we consider

a fusion center strategy with lower computational complexity which only fuses the

statistics contained in the local sensor reports.

Assumption 4.1. The time dependence of reported information is negligible, as in

the case where the false alarm and missed probability constraints are close to each

other.
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As the time dependence of the reporting times is neglected, therefore the arrival

time of sensing reports is assumed memoryless.

Proposition 4.1. The transmission of local reports is a Poisson process with average

arrival rate λθ under Hθ, θ ∈ {0, 1}.

The probability that the fusion center receives k sensing reports in a certain time

slot can be then calculated as

Pθ(n = k) = e−λθ
λkθ
k!
, (4.15)

with
∞∑
k=0

Pθ(n = k) = e−λθ + e−λθλθ + o(λθ) = 1. (4.16)

In (4.16), we neglect the probability that the fusion center receives more than one

sensing report in a single time slot, i.e., we consider that the fusion center receives

either no report or only one report in each time slot. As the excess value over

thresholds a and b is neglected, the reported statistic at a local sensor is given by

rk =


a, gk ≤ a,

0, a < gk < b,

b, gk ≥ b.

(4.17)

If local false alarm and missed detection constraints are achieved with equality, we
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can further express the distribution of received sensing information as

P (rk = 0|Hθ) = e−λθ ,

P (rk = a|Hθ) = λθe
−λθ(1− αθ),

P (rk = b|Hθ) = λθe
−λθαθ. (4.18)

As (4.18) differs under H0 and H1, the optimal stopping problem at the fusion center

can be formulated as the following binary hypothesis problem:

H0 : r1, r2, ... ∼ P0(r),

H1 : r1, r2, ... ∼ P1(r), (4.19)

where Pθ(r), θ ∈ {0, 1}, is the probability mass function of rk under hypothesis Hθ,

θ ∈ {0, 1}.

Proposition 4.2. Under Assumptions 3.2, 3.3, and 4.1, the person-by-person optimal

decision strategy at the fusion center is to apply SPRT.

Proof. For any fixed decision rules of local sensors, the fusion center is faced with a

classical sequential detection problem, the observations of which are reported infor-

mation by local sensors. Following Proposition 4.1, these observations received by

the fusion center are independent and identically distributed. Thus, Proposition 4.2

follows from Theorem 2.1.

Thus, the fusion center decision rule tracks likelihood ratio statistic

lk =
k∑
i=1

log
P1(ri)

P0(ri)
. (4.20)
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The fusion center stops and makes a final decision Gk at time k whenever the test

statistic lk is significant, predefined thresholds, A and B are exceeded, i.e.,

Gk =


0, lk ∈ (A,B),

1, lk /∈ (A,B).

(4.21)

where A < 0 < B are fusion center thresholds, which can be determined based on the

fusion center false alarm and missed detection probabilities computed from (4.7) [15]

A = log
βC

1− αC
and B = log

1− βC
αC

. (4.22)

Based on (4.11) and (4.18), the expected contribution of the likelihood ratio to the

fusion center statistic can be calculated as

Eθ{log
P1(ri)

P0(ri)
} = e−λθ log

e−λ1

e−λ0
+ λθe

−λθαθ log
λ1e

−λ1α1

λ0e−λ0α0

+λθe
−λθ(1− αθ) log

λ1e
−λ1(1− α1)

λ0e−λ0(1− α0)

= cλθ + λθe
−λθ(1− αθ)a+ λθe

−λθαθb, (4.23)

with

cλθ = e−λθ log
e−λ1

e−λ0
+ λθe

−λθ log
λ1e

−λ1

λ0e−λ0
. (4.24)

If the absolute value of fusion center test thresholds are large, based on (4.18), (4.20),

and (4.22), the expected number of sensing reports transmitted to the fusion center
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is given by

E0{R} = Aλ0e
−λ0/E0{log

P1(ri)

P0(ri)
},

E1{R} = Bλ1e
−λ1/E1{log

P1(ri)

P0(ri)
}. (4.25)

Above set of equnations can be further expressed using (4.23), i.e,

E0{R} =
A

cλθe
λθ/λθ + (1− αθ)a+ αθb

,

E1{R} =
B

cλθe
λθ/λθ + (1− αθ)a+ αθb

. (4.26)

If the communication cost constraint is achieved with equality, the relationship be-

tween local sensor and fusion center threshold values can be expressed as

cλ0 + λ0e
−λ0((1− αL)a+ αLb) = Aλ0e

−λ0/κ,

cλ1 + λ1e
−λ1(βLa+ (1− βL)b) = Bλ1e

−λ1/κ. (4.27)

From hypotheses H0 and H1, the two nonlinear equations in (4.27) can be solved to

determine local sensor thresholds a and b in terms of A < 0 < B and κ.

The proposed procedure is summarized by Algorithm 2.

4.4 Performance analysis

Similar to the analysis in the previous chapter, we investigate the asymptotic relative

efficiency (ARE) [67] of the proposed detection scheme with respect to the centralized
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Algorithm 2 Decentralized detection with Poisson arrival model.

1: procedure
2: gm ← 0, m = 1, 2, ...,M .
3: while l ∈ (A,B) do
4: rm ← 0, m = 1, 2, ...,M .
5: for m = 1 to M do . Local sensing strategy.
6: if gmk /∈ (a, b) then rmk ← gmk , gmk ← 0.

7: else gm ← gm + log
fm1 (Xm

k )

fm0 (Xm
k )

.

8: end if
9: end for
10: for m = 1 to M do . Fusion center strategy.

11: if rm 6= 0 then l← l + log
P1(rmk )

P0(rmk )
.

12: end if
13: end for
14: end while
15: if l ≥ B then H1 is true., . Decision making.
16: else H0 is true.
17: end if
18: end procedure

scheme, i.e.,

AREθ(αC , βC , κ) = lim
H1→H0

EC
θ {τ}
Eθ{τ}

, θ ∈ {0, 1}, (4.28)

where EC
θ {τ} denotes the average detection delay of the sequential probability ratio

test, which is the delay-optimum centralized scheme and is given by

EC
θ {τ} =

1

dθ

[
βθlog

1− βC
αC

+ (1− βθ)log
βC

1− αC

]
, (4.29)

where β0 = αC and β1 = 1− βC , and

dθ = Eθ{log
f1(X1

1 , ..., X
M
1 )

f0(X1
1 , ..., X

M
1 )
}, θ ∈ {0, 1}, (4.30)
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with fθ(X
1, ..., XM) denotes the joint pdf of local observations under Hθ, θ ∈ {0, 1}.

Since local observations across sensors are independent conditioned on each hypoth-

esis,

dθ = Eθ{log
f 1

1 (X1
1 )

f 1
0 (X1

1 )
+ ...+

fM1 (XM
1 )

fM0 (XM
1 )
} =

M∑
m=1

dmθ . (4.31)

It should be noted that as H1 approaches H0, the detection delay of the local test

approaches infinity, and the excess value over test thresholds vanishes. Therefore the

use of (4.29) in the calculation of (4.28) does not rely on the assumption that excess

over threshold values are negligible. For the case of identical local sensors

dmθ =
dθ
M

= Eθ{log
f 1

1 (X1
1 )

f 1
0 (X1

1 )
}, m = 1, ...,M. (4.32)

If R sensing reports are received by the fusion center over the course of the detection

task, the detection delay of proposed algorithm can be expressed as

Eθ{τ} =
E{R}
M

Em
θ {v}. (4.33)

By substituting (4.12), (4.29), and (4.33) into (4.28), we obtain

AREθ(αC , βC , κ) =
[
βθlog1−βC

αC
+ (1− βθ)log βC

1−αC

]
×
[
αθlog1−βL

αL
+ (1− αθ)log βL

1−αL

]−1

κ−1. (4.34)
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4.5 Numerical results

A scenario is considered where observations at each local sensor are IID Gaussian

sequences with mean 0 and variance 1 under H0, and mean 0.1 and variance 1 under

H1. For similar reasons as explained in the first paragraph of Section 3.6, without

much loss in generality, only a single set of example PDFs are used. The prior

probability that H0 is true is p0 = 0.5, and αC = βC is considered. Note that for

a different setup of local observation distributions, the fusion center test threshold

values stay the same, as they depend only on the predefined false alarm and missed

detection constraints. However, different local test threshold values may be obtained,

as nonlinear equations (4.27) are changed. The false alarm and missed detection

probabilities and the average detection delay are calculated based on 105 Monte Carlo

trials.

0 5 10 15 20 25 30 35
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Communication cost constraint

A
R

E
1

 

 

M=2
M=3
M=4

Figure 4.1: ARE1 of Algorithm 2 with respect to the centralized scheme versus com-
munication cost constraint, κ.
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Figure 4.1 shows ARE versus κ when H0 is true and αC = βC = 0.01. The

ARE of Algorithm 2 increases as the communication cost constraint increases. This

is expected since allowing more communications between local sensors and the fusion

center reduces the information loss during local sensing report generation. We observe

that ARE is reduced as more local sensors are utilized under the same constraint, κ,

i.e., more observations in the overall system need to be processed and quantized to

obtain the same performance.
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Figure 4.2: ARE1 of Algorithm 2 with respect to the centralized scheme versus false
alarm constraint.

In Figure 4.2, the effect of false alarm probability on the ARE is investigated. As

shown, the ARE of Algorithm 2 decreases as the false alarm probability increases.

This is expected: when the false alarm probability at the fusion center increases,

the false alarm probabilities of local sensors’ sequential tests increase as well. Since

the transmitted sensing reports become less reliable, the ARE of Algorithm 2 de-

creases. An extreme case of the proposed test with κ = 1 (Or-rule) is also considered
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for comparison. In summary, one can observe the gain in ARE by enabling more

communications.
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Figure 4.3: Average detection delay versus false alarm constraint, with different com-
munication constraints.

In Figure 4.3, the relationship between false alarm probability and expected de-

tection delay is illustrated, where the analytical performance is calculated based on

(4.28). Average detection delay obtained from analysis and simulation are in closer

agreement when the false alarm constraint is small. The gap is due to the fact that as-

sumptions that neglect excess values over thresholds are becoming less accurate. One

can also notice that a shorter overall detection delay is achieved when κ is increased,

since local sensor error probability constraints are relaxed, leading to a shorter delay

for local sensor tests.
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Figure 4.4: Average detection delay versus false alarm constraint, with different num-
bers of local sensors.

Figure 4.4 investigates performance when different numbers of local sensors are

deployed. Both analytical and simulation results are presented. Although shorter

delay is achieved when deploying more local sensors, performance improvement is

not in proportion to the number of applied sensors. More specifically, the average

detection delay achieved using four sensors is greater than half of the average delay

using two sensors, which is consistent with ARE of proposed algorithm decreasing as

M increases.

In Figure 4.5, the detection performance of Algorithm 1 from Chapter 3 is con-

sidered for comparison. The relationship between false alarm probability and ex-

pected detection delay is illustrated, when the missed detection probability is fixed

to βC = 0.002, and M = 2 and 4. As is shown in the figure, the performance loss

by using the Poisson arrival approximation is relatively small, especially when false

alarm and missed detection probabilities are close to one another. As predicted, when
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αC = βC the two algorithms have nearly identical performance.
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Figure 4.5: Performance comparison between Algorithm 2 and Algorithm 1 in Chapter
3, with different numbers of local sensors.

4.6 Summary

In this chapter, a simplified decentralized hypothesis testing algorithm is proposed

using the same system model as in the previous chapter. The transmission of local

sensing reports is modeled as a Poisson process, and a person-by-person optimum

strategy is applied in solving the formulated problem. The fusion center test statistic

is updated based only on the data contained in each sensing report. Compared with

the algorithm developed in the previous chapter, the computational complexity is

reduced as the numerical integration calculation of the report-generating distribution

is avoided. Asymptotically relative efficiency of proposed algorithm with respect to

the centralized detection scheme is investigated.
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Chapter 5

Decentralized change detection with Poisson model

5.1 Introduction

In this chapter, we investigate the decentralized change detection problem. The

considered system model and problem formulation are introduced. The formulated

change detection problem aims to minimize the average detection delay, subject to the

false alarm rate and the communication cost. Following the assumption in the previ-

ous chapter, the transmission of local sensing reports is modeled as a Poisson process.

A person-by-person optimum strategy is applied to solve the proposed problem.

We investigate two different formulations for the communication cost constraint.

One is to limit the expected number of reports received by the fusion center during

the detection task. The other formulation is more restrictive, where the exact num-

ber of communications is not allowed to exceed a predefined integer. In the former

formulation, the fusion center threshold is a constant, which can be achieved through

dynamic programming. In the latter case, the value of fusion center threshold is time

varying.
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5.2 System model

We consider a distributed sensing system with M geographically separated sensors,

S1, ..., SM , and a fusion center, F , that comprise the sensing system shown in Figure

5.1. The fusion center can only gain access to the data of the sensed target through

each local sensor.

F

Decision Making

S1 S2
......S3 SM

Target

Figure 5.1: System model of change detection.

Each sensor takes observations sequentially and forwards sensing reports to the

fusion center where a final decision is made. Let Xm
k denote the observation obtained

by the mth sensor at time slot k. At local sensor m, 1 ≤ m ≤M , observed sequence

{Xm
1 , ..., X

m
k } has common probability density function (PDF) fm0 before a random

change point Γ, and has common PDF fm1 after Γ. The change point Γ is modeled

as geometrically distributed motivated by the fact that it is the only discrete-valued

distribution with the memoryless property. Let 0 < ρ < 1 denote the distribution

parameter, and 0 ≤ π0 < 1 denote the prior probability that a change happened
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before the test. We have

P (Γ = k) = π0I{k=0} + (1− π0)ρ(1− ρ)k−1I{k≥1}, (5.1)

where I{•} is the indicator function, and π0 represents the probability of the change

having occurred before the observations are taken. The change detection problem

at each local sensor can be expressed as the following multiple hypothesis testing

problem:

H0 : X1, ..., XΓ−1 ∼ f0,

H1 : XΓ, XΓ+1, ... ∼ f1, (5.2)

where each integer Γ indicates a different hypothesized change time. It is assumed

that statistical properties of the sensors’ observations change at the same time, and

observations across sensors are nonidentical but independent conditioned on hypoth-

esis H0 or H1.

Local sensors are able to communicate with the fusion center, but communications

among local sensors are not permitted. We assume that the communication channel

between sensors and the fusion center is error-free and extremely limited two-way

communication is possible: the fusion center only provides local sensors simple ac-

knowledgments to stop sensing when it is able to make a decision; otherwise, there is

no feedback from the fusion center.
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5.3 Problem formulation

After taking each observation, a local sensor decides whether it is worth sending a

report to the fusion center. Let Vk ∈ {0, 1} denote the reporting decision indicator of

a certain local sensor at time k by

Vk = ϑk(gk−1, Xk), k = 1, 2..., (5.3)

where gk−1 is the cumulative statistic based on observations before time k, i.e. {X1, ...,

Xk−1}, and ϑk is local decision policy of the local sensor at time k. If Vk = 0, the

local sensor continues taking observations. If Vk = 1, the sensor generates a local

report, rk, and sends it to the fusion center. It is not necessary for a local sensor to

draw a conclusion on whether a change has occurred before sending its local report.

As long as a local sensor believes that a change is likely to occur it ought to report

to the fusion center.

At the fusion center, sensing reports from local sensors are received sequentially.

A cumulative statistic at the fusion center, qk, is updated at each time slot based on

the reported information at current time slot k via

qk = Φ(qk−1, rk), k = 1, 2..., (5.4)

where Φ represents the statistic update function and rk is the reported information at

time k which may be sent from any local sensor. If rk equals zero, no sensing report

is received at time k. Based on the statistic qk, the fusion center makes decisions on
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whether to stop or continue taking sensing reports, i.e.,

Uk = ϕ(qk), k = 1, 2..., (5.5)

where ϕ is the fusion center decision policy and Uk ∈ {0, 1} denotes the stopping

decision of the fusion center at time k: if Uk = 0, the fusion center continues receiving

sensing reports. If Uk = 1, the sensing task stops and claims that a change has

occurred. The detection problem of the sensing system can be formulated as

minimize
ϑ ϕ

E{(τ − Γ)+},

subject to RFAC ≤ γC and N ≤ κ, (5.6)

where (x)+ = max{x, 0} and τ is the stopping time of the sensing system. RFAC is

the false alarm rate at the fusion center, which is given by

RFAC =
1

E∞{τ}
, (5.7)

with E∞{•} representing the conditional expectation given no change occurs. In

(5.6), N is the number of reports received by the fusion center, i.e., number of com-

munications before the decision is made and is given by

N =
M∑
m=1

τ∑
k=1

V m
k . (5.8)

In (5.6), γC and κ are constraints for false alarm rate and communication cost, re-

spectively. In addition to traditional metrics of average detection delay and false



5.4. LOCAL SENSING STRATEGY 78

alarm rate a new metric defined as the number of communications between local sen-

sors and the fusion center is introduced. This constraint is able to reflect the cost of

energy consumption and transmission overhead at local sensors. In contrast to other

formulations, the proposed communication cost restricts channel uses rather than the

bandwidth of the control link.

In the sensing system considered, local sensors cannot communicate with one

another, and the fusion center only provides minimum feedback when a final decision

is made. Thus, sensing devices cannot optimize their strategies cooperatively. The

best they can do is to individually optimize their strategies based on local information.

Such a suboptimal strategy is known as person-by-person optimality, i.e., it is not

possible to improve the corresponding team performance by unilaterally changing

any of the decision functions [31]. More specifically, we first investigate the optimal

sensing strategy at each local sensor, and then develop the optimal fusion rule for

fixed local sensing policies. The proposed detection strategy follows Assumptions

3.2, 3.3, and 4.1 in previous chapters, and we additionally apply:

Assumption 5.1. The observations at a each local sensor is IID under f0, and IID

under f1 after a random change point in time. The PDFs of f0 and f1 are known by

all local sensors and the fusion center.

5.4 Local sensing strategy

A final decision is made at the fusion center based on received sensing reports from

local sensors. In order to minimize the overall detection delay, each sensing report

ought to be generated as quickly as possible, given a constraint on the local decision
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reliability. Thus, the optimization problem at each local sensor can be expressed as

minimize
ϑ

E{v},

subject to RFAL ≤ γL, (5.9)

where v represents the delay for a local sensor to generate a sensing report and

RFAL = 1/E∞{v} is the local average false alarm rate, with constraint of γL. Follow-

ing Assumption 5.1 and Theorem 2.4, we can obtain

Proposition 5.1. Under Assumptions 3.2, 3.3 and 5.1, the CUSUM test is locally

person-by-person optimal with a set of precomputed thresholds determined globally.

Proof. Consider the mth local sensor, with false alarm rate Rm
FAL, 1 ≤ m ≤ M

incurred by the system, and suppose that the decision rules of all the other local sen-

sors, as well as the fusion center are fixed. According to Assumptions 3.2 and 5.1, as

well as Theorem 2.4, among all tests which achieve prescribed false alarm constraint,

the average delay of CUSUM is minimum. In case that sensor m applies local tests

other than CUSUM, a greater local detection delay is obtained, and therefore from

Assumption 3.3, the cost of the overall detection system increases.

Remark 5.1. If the communication constraint is at the most restricted extreme, each

of the local sensors performs a CUSUM. The fusion center makes a final decision when

the first local sensing report is received. This leads to the One-shot CUSUM scheme

[44].

From Proposition 5.1, the optimal solution to (5.9) can be achieved by tracking

likelihood ratios for all possible change hypotheses given by (5.2) corresponding to
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all possible change times

gk = max
1≤j≤k

k∑
i=j

log
f1(Xi)

f0(Xi)
. (5.10)

A local sensor forwards a sensing report to the fusion center whenever the test statistic

gmk is significant, i.e., exceeds a predefined threshold,

Vk =


1, gk ≥ hl,

0, gk < hl,

(5.11)

where hl is the threshold for local sequential test, which is set to satisfy the false

alarm constraint γL. The optimality of such strategy in solving (5.9) is shown in [24].

From (5.1), we can imply that a change will occur with probability one. Due to

the communication cost constraint, the fusion center cannot take more than κ sensing

reports. As a result, once κ reports have been received, the detection delay can only be

minimized if the decision taken is H1. Otherwise, if we decide H0 after the last report

is received, there will be infinite delay with probability one as no communication is

allowed. Under H0, a false report is generated with rate RFAL at each local sensor.

Since κ false sensing reports trigger a false alarm at the fusion center, we have

RFAC = RFAL
M

κ
. (5.12)

Thus, if the false alarm rate of each local sensor is set to RFAL ≤ γL, we have that

the false alarm rate at the fusion center must satisfy

RFAC =
m

κ
RFAL ≤ γC . (5.13)
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From (5.9) and (5.13), the local false alarm rate must satisfy

γL ≤
κ

m
γC . (5.14)

Since the delay for generating each sensing report increases with the local false alarm

rate, we set the value of γL to satisfy (5.14) with equality to achieve minimum local

detection delay.

5.5 Fusion center strategy

At the fusion center, sensing reports are received sequentially in time. According to

Theorem 2.3 in Chapter 2, if the report generation policy at the local sensor is fixed,

the fusion center is faced with an optimal stopping problem, which can be solved

by tracking the posterior probability [26]. Let πk be the posterior probability that a

change has occurred at the kth time slot, which is given by

πk = P (Γ ≤ k|Fk), (5.15)

where Fk = σ(r1, r2, ..., rk) are the sigma algebras generated by the observed infor-

mation up to the kth time slot and rk = 0 if no report is received at time k. Based

on Bayes’ rule, πk can be shown to satisfy the recursive formula

πk+1 =


Φ(0)(πk), if rk+1 = 0,

Φ(1)(πk, rk+1), if rk+1 6= 0,

(5.16)
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with

Φ(0)(πk) = πk + (1− πk)ρ (5.17)

and

Φ(1)(πk, rk+1) =
P (H1,k+1)P (rk+1|H1,k+1)

P (rk+1)

=
P (H1,k+1)P (rk+1|H1,k+1)

P (rk+1, H1,k+1) + P (rk+1, H0,k+1)

=
Φ(0)(πk)P (rk+1|H1)

Φ(0)(πk)P (rk+1|H1) + (1− Φ(0)(πk))P (rk+1|H0)
, (5.18)

where P (Hθ,k+1) = Φ(0)(πk), θ ∈ {0, 1} is the prior probability of Hθ at the (k + 1)th

time slot. The third equality in (5.18) is based on the memoryless property of the

Poisson model, i.e., P (rk+1|H1,k+1) = P (rk+1|H1). The average rate that a local

sensor reports to the fusion center is given by

λmθ =
1

Em
θ {v}

,m = 1, 2, ...,M, (5.19)

where Eθ{•} is the conditional expectation under Hθ, θ ∈ {0, 1}. Thus, the average

rate that a fusion center receives sensing reports is the summation of local reporting

rates. That is,

λθ =
M∑
m=1

1

Em
θ {v}

. (5.20)

Following the same argument as in the previous chapter, the transmission of sensing

reports to the fusion center can be modeled as a Poisson arrival process with average

arrival rate λθ under Hθ, θ ∈ {0, 1}. The probability that the fusion center receives k

sensing reports in a certain time slot under Hθ, θ ∈ {0, 1} can be calculated as (4.15)
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and (4.16). Moreover, the probability that the fusion center receives more than one

sensing report in a single time slot is neglected. Thus, we consider that the fusion

center receives either no report or only one report in each time slot. The probability

of P (rk+1|Hθ) can be then calculated as

P (rk+1|Hθ) = λθe
−λθ , θ ∈ {0, 1}. (5.21)

5.5.1 Expected-communication-cost-constraint optimization

We first consider the solution to the problem with a constraint on the expected number

of received sensing reports, i.e.

minimize
`

E{(τ − Γ)+},

subject to RFAC ≤ γC and E{N} ≤ κ, (5.22)

and then extend the result to solve (5.6). The total expected cost of (5.22) can be

expressed as

R(`) = PΓ(τ < Γ) + cdE{(τ − Γ)+}+ cnE{N}. (5.23)

where ` denotes the stopping policy at the fusion center, and cd and cn are nonnegative

constants that represent the cost of taking one sample and one report respectively.

The values of cd and cn control the relative importance of the three performance

indices in the optimization problem. At each time slot, the cost incurred if the fusion

center stops is given by

Jstop(πk) = 1− πk, (5.24)

sdb2
Highlight



5.5. FUSION CENTER STRATEGY 84

and the expected cost that the fusion center will incur if it continues the test can be

expressed as

Jcont(πk) = cd + cnP (rk+1) + E{Jcont(πk+1)}, (5.25)

with

P (rk+1) = πkP (rk+1|H1) + (1− πk)P (rk+1|H0), (5.26)

and using (5.17) and (5.18),

E{Jcont(πk+1)} = P (rk+1)Jcont(Φ
(0)(πk)) + (1− P (rk+1))E{Jcont(Φ(1)(πk, rk+1))},

(5.27)

It can be shown that both Jstop(πk) and Jcont(πk) are nonnegative concave functions

on the interval [0, 1], with Jstop(1) = Jcont(1) = 0 [64].

Proposition 5.2. Under Assumptions 3.2, 3.3, 4.1, and 5.1, the person-by-person

optimal decision strategy at the fusion center which solves (5.22) is given by

τ ∗ = inf{k ≥ 1|πk > π∗}. (5.28)

The threshold of the fusion center test, π∗, is the solution to

Jstop(π) = Jcont(π). (5.29)

Proof. For any fixed decision rules at local sensors, the fusion center is faced with a
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classical sequential detection problem, the observations of which are reported infor-

mation by local sensors. Following Proposition 4.1, these observations received by

the fusion center are independent and identically distributed. Thus, Proposition 4.2

follows from Theorem 2.3.

In Proposition 5.2, the cost function Jcont(π) is computed recursively using (5.25).

Figure 5.2 shows an example of Jcont(π) and Jstop(π), and the optimal solution π∗

is found when two curves intersect. More accurate Jcont(π) approximation can be

obtained by increasing the number of iterations and points on the π-axis [65].
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Figure 5.2: Cost function to stop and continue at the fusion center, using the expected
communication cost constraint.

5.5.2 Communication-cost-constraint optimization

When we have a constraint on the expected number of received sensing reports, the

optimization problem (5.22) can be solved by tracking the posterior probability and

comparing it to a constant threshold. The number of received sensing reports during
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the detection process, N , is a random variable. It is possible that after receiving N

reports, the posterior probability is less than the test threshold. In such a situation,

the fusion center still needs to stop and make a decision, as no more communication is

allowed. We refer to such a stop as an early termination. Since the test statistic does

not reach the desired threshold, the fusion center decision in an early termination

state is less reliable. In order to avoid this situation, we add a new term to the cost

function, i.e.,

R(ϕ) = PΓ(τ < Γ) + cdE{(τ − Γ)+}+ cnE{N}+ ctnP (κ <
τ∑
i=1

ri), (5.30)

where ctn and P (κ <
∑τ

i=1 ri) are the cost and probability of early termination,

respectively. The value of ctn is set to be greater than 0.5 so that the penalty is

never less than simply guessing the result. This avoids situations in which the fusion

center prefers to exceed the communication cost constraint. At a certain time slot,

if the fusion center stops to make a decision, it incurs a cost of error. However, by

stopping the test, the fusion center avoids the cost of termination. At a certain time

slot, the probability of early termination is related to the applied test threshold and

the number of sensing reports already received by the fusion center. Let Ptn(n, πL)

denote the early termination probability using the test threshold πL when n sensing

reports (out of κ) is received at the fusion center. We can express the cost function

to stop before the first sensing report is received given by
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Figure 5.3: Cost function to stop and continue at the fusion center, using the com-
munication cost constraint.

J0
stop(πk) = 1− πk − ctnPtn(0, π∗). (5.31)

The value of Ptn(0, π∗) can be computed numerically and we can then express J0
stop

as a function of πk. The cost function of continuing can be expressed in the same

way as (5.25), which can be approximated through dynamic programming. An initial

threshold value π0 is the solution to

J0
stop(π) = Jcont(π). (5.32)

Figure 5.3 shows an example of curves J0
stop(πk) and Jcont(π), and the solution to

(5.32) is found at their intersection.

Every time the fusion center receives a new sensing report, the probability of

early termination changes as the number of communications approaches the allowed
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limit κ. We need to calculate this new probability and update the value of the cost

function to stop. Let Jnstop(π) denote the cost function to stop when n sensing reports

are received. We have

J1
stop(πk) = 1− πk − ctnPtn(1, π0),

Jnstop(πk) = 1− πk − ctnPtn(n, πn−1), n ≥ 2, (5.33)

where πn−1 is the solution to

Jcont(πk) = 1− πk − ctnPtn(n− 1, πn−2). (5.34)

As the fusion center continues taking sensing reports, we obtain a sequence of thresh-

olds, πn, n = 0, 1, ..., which are obtained recursively based on (5.33). Using a similar

argument as in the proof of Proposition 5.2, we have

Proposition 5.3. Under Assumptions 3.2, 3.3, 4.1, and 5.1, the person-by-person

optimal decision strategy at the fusion center which solves (5.6) is given by

τ ∗ = inf{k ≥ 1|πk > πn,where n =
k∑
i=1

ri}. (5.35)

The proposed procedure is summarized by Algorithm 3.

5.6 Numerical results

For the numerical results presented in this section, we assume that the observations

{Xn} are i.i.d. Gaussian sequences with mean 0 and variance 1 under H0, and mean

0.1 and variance 1 under H1. Here, since the PDFs only affect the likelihood ratio
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Algorithm 3 Decentralized change detection with Poisson transmission model.

1: procedure
2: i← 1, π ← 0, π∗ ← [π0, ..., πκ−1], gm ← 0, m = 1, 2, ...,M .
3: while π < π∗(i) do
4: r ← 0
5: for m = 1 to M do . Local sensing strategy.
6: if gmk < 0 then gmk ← 0
7: end if
8: if gmk < hl then gm ← gm + log

fm1 (Xm
k )

fm0 (Xm
k )

.

9: else r ← 1, gmk ← 0.
10: end if
11: end for
12: if r == 1 then π ← Φ(1)(π), i← i+ 1. . Fusion center strategy.
13: else π ← Φ(0)(π).
14: end if
15: end while
16: Declare a change
17: end procedure

term in Algorithm 3, only a single set of example PDFs are used. We also assume

the change time is geometrically distributed with parameter ρ = 0.01 and prior prob-

ability π0 = 0. For simplicity, we consider a sensing system with two local sensors,

M = 2. The false alarm rate, average detection delay, and the early termination prob-

ability are calculated based on 100000 Monte Carlo trials. For the optimal threshold

computation, we consider 5000 points on π-axis and 2000 iterations.
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Figure 5.4: Average detection delay versus false alarm rate.

In Figure 5.4, the relationship between false alarm probability and average de-

tection delay is illustrated when the number of communications is constrained to be

15 and 25. As noted in Figure 5.4, lower false alarm rate results in longer detection

delay. This is due to local sensors requiring more time to collect enough observations

to improve the detection reliability. The detection performance of one-shot CUSUM

algorithm with minimal strategy for fusion rule is considered for comparison. It can

be observed that shorter detection delay is achieved with Algorithm 3. We also inves-

tigate the performance of a centralized detection algorithm, which can be considered

as the performance upper bound of Algorithm 3. In the centralized algorithm, raw

data collected from local sensors are directly forwarded to the fusion center, where a

CUSUM test is applied.

In Figure 5.5, we keep the false alarm rate constraint unchanged, RFAC = 0.001

and 0.002, and investigate the detection delay under different communication cost
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constraints. As shown in the figure, detection delay decreases when the communi-

cation cost constraint is increased. Such behavior can be explained from (5.13). If

κ is increased, local false alarm rate increases as well. This leads to a shorter delay

for local sensors to generate each sensing report, and therefore reduce the detection

delay of the sensing system.

8 10 12 14 16 18 20 22 24
100

200

300

400

500

600

700

800

N

A
ve

ra
ge

 d
et

ec
tio

n 
de

la
y

 

 

R
FAC

=0.001

R
FAC

=0.002

Figure 5.5: Average detection delay versus communication cost constraint.

5.7 Summary

A decentralized change detection algorithm is proposed, where the transmissions of

local sensing reports are modeled as a Poisson process. The proposed optimization

problem can be solved by a person-by-person strategy. That is, each local sensor

optimizes its sensing policy individually and the fusion center applies a sequential test

to make the final decision. Optimal threshold values for the proposed algorithm are

obtained through dynamic programming. Simulation results are provided to illustrate

features of the proposed algorithm.
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Chapter 6

Communication-efficient decentralized change

detection

6.1 Introduction

In this chapter, an alternative method to solve decentralized change detection prob-

lem is proposed. Unlike the framework in Chapter 5, the local sensor test applies

the false alarm probability constraint, and the fusion center test tracks the sum of

reported statistics from local sensors. A two-threshold based detection algorithm is

developed, and the performance of the algorithm is optimized through the joint de-

sign of threshold values at both local sensors and the fusion center. The proposed

change detection framework is much easier to implement compared with the one in

the previous chapter, as a simple fusion rule is applied and coupled threshold values

can be obtained through one-dimensional search. In practice, the proposed algorithm

will not require the decision-epochs of the local detectors to be precisely synchronized.



6.2. SYSTEM MODEL AND PROBLEM FORMULATION 93

6.2 System model and problem formulation

We consider the same decentralized sensing system as in Chapter 5, where local

sensors are memoryless, receive independent observations, and without full feedback

from the fusion center. At each time slot k, a sensor decides whether it is worth

sending a report to the fusion center. Let Wk ∈ {0, 1} denote the reporting decision

indicator of a certian local sensor at time k.

Wk = µk(gk−1, Xk), k = 1, 2... (6.1)

where Xk is the local observation taken at time k and gk−1 is the cumulative statistic

based on observations before time k, i.e. {X1, ..., Xk−1}, and µ is local decision

policy of a certain sensor. If Wk = 0, the local sensor continues taking observations.

If Wk = 1, the sensor generates a local report, rk, based on already accumulated

information and sends it to the fusion center, i.e.,

rk =


gk, Wk = 1,

0, Wk = 0.

(6.2)

Note that it is not necessary for a local sensor to draw a conclusion on whether a

change has occurred before sending its local report. If the communication cost is

affordable, as long as a local sensor believes that a change is likely to occur it ought

to report to the fusion center. Let σ denote the decision making policy of the fusion
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center. The detection problem can be formulated as

minimize
µ σ

E{(τ − Γ)+},

subject to PFAC ≤ αC and E{N} ≤ κ, (6.3)

where (x)+ = max{x, 0}. In (6.3), N represents the number of reports received by

the fusion center, i.e., number of communications, before the decision is made and is

given by

N =
M∑
m=1

τ∑
k=1

Wm
k , (6.4)

PFAC is the probability of false alarm that the fusion center claims a change has

occurred when there is no change, which is given by

PFAC = PΓ(τ < Γ), (6.5)

where PΓ represents the conditional probability given the change occurs at time Γ. αC

and κ are constraints of false alarm probability and communication cost, respectively.

A global decision is made at the fusion center based only on the reports received

from local sensors. Thus, the global performance is crucially affected by the delay and

reliability of reports generated by local sensors. That is, in order to achieve minimum

the average detection delay, local sensors need to forward reliable sensing reports to

the fusion center as quickly as possible. This function can be achieved by applying

the following strategy at local sensors:

minimize
µ

E{v},

subject to PFAL ≤ αL, (6.6)
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where v is the delay for a local sensor to generate each sensing report, PFAL is the

probability of false alarm for a local sensor detecting a change, i.e.,

PFAL = P (Wk = 1|H0), (6.7)

and αL is the local sensing false alarm constraint.

6.3 Proposed algorithm

The optimal solution for the formulation of (6.3) requires joint design of policies at

both local sensors and the fusion center. However, except for final acknowledgement,

the communication between the local sensor and the fusion center is unidirectional

and local sensors cannot communicate with one another. Thus, the desired strategy

is to optimize the sensing task (6.6) locally, and then find the optimal policy at the

fusion center. Here, we also apply Assumptions 3.2, 3.3, and 5.1, as in Chapter 5.

Following the same argument in Chapter 5, one obtains

Proposition 6.1. Under Assumptions 3.2, 3.3 and 5.1, the CUSUM test is locally

person-by-person optimal with a set of precomputed thresholds determined globally.

The optimal local policy can be achieved by tracking the CUSUM likelihood ratio

statistic as follows:

gk = max
1≤j≤k

k∑
i=j

si with si = log
f1(Xi)

f0(Xi)
, (6.8)

where gk represents the test statistic of the local sensor at time k, f0 and f1 are the

probability density functions. A local sensor forwards a sensing report to the fusion
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center whenever the test statistic gk is significant, i.e., exceeds a predefined positive

threshold hl. That is

Wk = I{gk≥hl}, (6.9)

where I{•} is the indicator function. The information contained in the local sensing

report is the value of gk,

rk =


gk, gk ≥ hl,

0, gk < hl.

(6.10)

In (6.10), rk = 0 represents the event that no report is forwarded to the fusion center.

The fusion center collects local sensing reports sequentially. The sensing task stops

and claims a change occurs as soon as the test statistic at the fusion sensor exceeds

a threshold, i.e.,

Λ =
M∑
m=1

τ∑
k=1

rk ≥ hf , (6.11)

where Λ is the fusion center test statistic and hf is the fusion center threshold. It is

clear from (6.10) and (6.11) that hf ≥ hl.

Remark 6.1. The proposed fusion rule (6.11) does not retain any optimal properties.

However, it does not rely on time information of local sensing reports and therefore

does not require precise synchronization of sensing devices in the system.

The proposed procedure is summarized by Algorithm 4. In the previous chapter,

the fusion center test statistic (5.16) is updated at each time slot, no matter whether

a sensing report is received or not; and the statistic is updated based on the state

of all local sensors at each time slot. Thus, the implementation of the algorithm in

Chapter 5 requires precise synchronization of all sensing devices in the system. On

the other hand, the proposed fusion center test statistic (6.11) is updated only when
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a sensing report is received; and as long as the summed reported statistic exceeds

hf , a final decision can be made. This enables a lower complexity detection method,

where precisely synchronized devices are not needed. However, the price to be paid

for avoiding synchronization is significant, which is shown in the following section.

Algorithm 4 Decentralized change detection.

1: procedure
2: gm ← 0, m = 1, 2, ...,M .
3: while Λ ∈ (0, hf ) do
4: for m = 1 to M do
5: if gmk < 0 then gmk ← 0
6: end if
7: if gmk < hl then gm ← gm + log

fm1 (Xm
k )

fm0 (Xm
k )

.

8: else z ← z + gmk , gmk ← 0.
9: end if
10: end for
11: end while
12: Declare a change
13: end procedure

The performance of the proposed algorithm can be optimized by suitable selections

of threshold values hl and hf . For this setup, the problem formulation of (6.3) becomes

minimize
hl hf

E{(τ − Γ)+},

subject to PFAC ≤ αC and E{N} ≤ κ. (6.12)

The constrained optimization problem in (6.12) can be also expressed in the following

manner:

minimize
hl hf

αC + c1E{(τ − Γ)+}+ c2κ. (6.13)

From a Bayesian view point, c1 and c2 are nonnegative constants that represent the

cost of taking one sample and one report, respectively. The values of c1 and c2
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control the relative importance of the three performance indices in the optimization

problem. According to the well-known Karush-Kuhn-Tucker (KKT) conditions [63],

the solutions to (6.12) and (6.13) can be made equivalent by proper choices of c1 and

c2. More specifically, for arbitrary values of αC and κ, there exists constants c1(αC , κ)

and c2(αC , κ) such that the solution to (6.13) is the solution to (6.12). In order to

solve (6.13), we define the cost function λ as

λ = αC + c1E{(τ − Γ)+}+ c2κ. (6.14)

As in (6.10), each time a report rk is sent to the fusion center, we have rk ≥ hl > 0.

Based on the fusion strategy (6.11), the expected number of reports received at the

fusion center before a decision is made is lower bounded by hf/hl, that is

κ ≤ hf
hl
. (6.15)

We next assume that when the local statistic reaches the threshold hl, the excess value

over hl is negligible. This assumption is accurate when the number of observations

taken at local sensors is large. Under this assumption, (6.15) becomes approximate

equality, i.e.,

κ ∼= hf
hl
. (6.16)

Average delay : The fusion center is able to make a decision after receiving κ, on

average, number of reports. Thus, the average detection delay can be obtained by

calculating the average delay for local sensors to generate κ reports. Let L denote the

expected number of samples required by a local sensor before generating a report. It

is straightforward that the average delay for a single local sensor to generate κ reports
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is κL. One can subsequently obtain that the average detection delay by applying M

independent identical local sensors is given by

E{(τ − Γ)+} =
L

M
κ. (6.17)

Using the approximation in (6.16), the average detection delay can be further ex-

pressed as

E{(τ − Γ)+} ∼= hfL

hlM
. (6.18)

False alarm: If a local sensor falsely detects a change, it still forwards a statistic

rk ∼= hl to the fusion center. Since the fusion strategy calculates the sum of reported

local statistics, after receiving hf/hl mistaken reports, false alarm occurs at the fusion

center. That is, hf/hl local false alarms trigger a global false alarm. Thus, the false

alarm probability of the fusion center is related to that of the local sensors is given

by

αC ∼= α

hf
hl
L . (6.19)

By substituting the expressions (6.16), (6.18), and (6.19) in (6.14), we have

λ ∼= α

hf
hl
C + c1

hfL

hlM
+ c2

hf
hl
. (6.20)

From (6.8), one can notice that the statistic applied at the local sensor is the well-

known CUSUM test. That is, the local sensor strategy can be viewed as a CUSUM

with the threshold value hl. It is well known that any CUSUM test can be expressed

as a sequence of sequential ratio probability tests (SPRT) with boundaries (0, hl) with

initial statistic zero [19]. For each SPRT, let P0 denote the probability that the test
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ends on the lower boundary, 0, and 1− P0 denote the probability that the test ends

on the upper boundary, hl. Also, we use L0 and L1 to represent the average number

of samples required for the SPRT test to end on boundary 0 and hl, respectively.

The expected number of samples at the local sensor required to generate a report is

therefore given by

L = L0

∞∑
n=1

nP n
0 (1− P0) + L1

=
P0

1− P0

L0 + L1

=
P0

1− P0

L0 +
1− P0

1− P0

L1

=
S(0, hl)

1− P0

, (6.21)

where S(0, hl) is the expected number of samples required by an SPRT to stop with

boundaries (0, hl), and the value of S(0, hl) is a function of hf and the PDF Hθ,

θ ∈ {0, 1}. From (6.20), the communication cost and false alarm terms do not depend

on the number of local sensors, M . This means that increasing the number of sensors

does not increase the delay cost nor false alarm cost. Moreover, for any constant

values of c1 and c2, we note that by calculating the second derivative of (6.20) with

respect to hf ,

∂2λ

∂h2
f

∼= ln2αL
h2
l

α

hf
hl
L > 0, hf ≥ hl > 0. (6.22)

Thus, (6.20) is a convex function of hf for hl ≤ hf < ∞ with the minimum value

given by the solution to

∂λ

∂hf
∼= 0. (6.23)
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By solving (6.23), the relationship between the optimal value of hl and hf that min-

imizes the expected cost is given by

hf ∼=
hl

lnαL
ln
c1L+ c2M

M ln 1
αL

. (6.24)

From (6.19), we have

hf ∼= hllnαC/lnαL. (6.25)

By equating (6.24) and (6.25) and simplifying, we have

c1L+ c2M −MαC ln
1

αL
∼= 0. (6.26)

From (6.21), L = S(0, hl)/(1− P0) and αL are solely determined by hl. In addition,

c1 and c2 are constants determined by αC and κ. Therefore, (6.26) can be expressed

in the form of

fh(hl, αC , κ) ∼= 0. (6.27)

Here, fh is a scalar function which can be uniquely determined given hl, αC , and

κ. Thus, for any predefined αC and κ, the optimal value of hl which minimizes

the expected total cost can be obtained by solving (6.27). The optimal hf is then

determined using (6.24) or (6.25). It is a well known result in sequential analysis that

the SPRT test with boundary value of (0, hl) can be approximated as [15]

S(0, hl) ∼= d−1
1 ln

1

αL
, (6.28)

where d1 is the expected value of log f1(X1)
f0(X1)

, under hypotheses H1. The above approx-

imation is achieved by assuming that when the test statistic in the SPRT crosses a
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boundary, the excess over the boundary is negligible. The approximation is consistent

with that in (6.16) and will be accurate if the number of observed samples is relatively

large on average. By substituting the value of S(0, hl) in (6.26), we have

fh(hl, αC) ∼= (c1d
−1
1 (1− P0)−1 −MαC)ln

1

αL
+ c2M. (6.29)

Remark 6.2. For local detection policy (6.8) and fusion rule (6.11), the threshold

values which minimize the detection delay subject to error probability and communi-

cation cost constraints satisfy (6.24) and (6.29).

In (6.29), P0 increases with hl whereas αL decreases with hl. It can easily be shown

that fh(hl, αC) is a monotonically increasing function of hl. Thus, for an arbitrary

value of αC , the solution to (6.27) can be found through one dimensional search.

After obtaining hl, one can subsequently calculate hf through (6.24) or (6.25).

6.4 Numerical results

For the numerical results presented in this section, we assume that the observations

{Xn} are i.i.d. Gaussian sequences with mean 0 and variance 1 under H0, and mean

0.1 and variance 1 under H1. Since PDFs of H0 and H1 only affect the likelihood

ratio term in Algorithm 4, a single set of example PDFs are used. We also assume

the change time is geometrically distributed with parameter ρ = 0.01. For simplicity,

we first consider two local sensors, M = 2. The false alarm probability and average

detection delay are calculated based on 105 Monte Carlo trials.

In Tables 6.1 and 6.2, the constraints of the false alarm probability αC and the av-

erage number of communications κ are listed. Based on (6.17), the average detection
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Table 6.1: Optimal solutions of thresholds under different constraints on the false
alarm probability and the on average number of communications.

αC κ E{(τ − Γ)+} hl hf
10−1 8 73 0.5746 4.5968
10−2 8 202 0.8789 7.0312
10−3 8 316 1.0623 8.4984
10−1 12 81 0.4777 5.7324
10−2 12 196 0.6930 8.3160
10−3 12 323 0.8359 10.031
10−1 24 72 0.3199 7.6776
10−2 24 193 0.4981 11.954
10−3 24 360 0.5791 13.898

Table 6.2: Performance comparisons between theoretical and simulated results.

αC α̂C κ κ̂ E{(τ − Γ)+} Ê{(τ − Γ)+}
10−1 0.1007 8 7.9006 73 98
10−2 0.0092 8 7.9641 202 246
10−3 0.0012 8 7.9945 316 353
10−1 0.0994 12 11.549 81 105
10−2 0.0094 12 11.635 196 242
10−3 0.0013 12 11.868 323 354
10−1 0.1030 24 20.829 72 107
10−2 0.0082 24 21.975 193 227
10−3 0.0011 24 22.236 360 362

delay approximations using various constraints are calculated in the third column.

The threshold values hl and hf that correspond to these constraints are obtained

through the proposed optimization methodology. In Table 6.2, the proposed Algo-

rithm 4 is simulated based on the obtained thresholds hl and hf . With such threshold

values, the simulated false alarm probability, α̂C , and the average number of com-

munications, κ̂, are close to the predefined constraints (see Table 6.2). This means

the false alarm probability and the communication cost can be well controlled to the

desired values at the same time. However, the simulated average detection delays,
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Ê{(τ − Γ)+}, are greater than their approximated values calculated. This is due to

the approximation in (6.16). It is noteworthy that when false alarm probability is

relatively low, the achieved detection delay is close to the approximated value.

In Figure 6.1, the relationship between false alarm probability and average detec-

tion delay is illustrated when the average number of communications is constrained

to be 10. As noted in Figure 6.1, the average detection delay increases as the false

alarm probability decreases, since longer detection delay allows local sensors to col-

lect more observations which improves the detection reliability. We investigated the

cases where two and three local sensors are used. For any false alarm probability, it

is apparent that shorter detection delay is obtained by using more local sensors as

expected.

Also in Figure 6.1, the delay performance of Algorithm 4 is compared with that of

Algorithm 3 in Chapter 5. Unlike the fusion center strategy in Chapter 5 which tracks

the posterior probability that a change has occurred, the proposed fusion center test

in this chapter is not person-by-person optimal. Thus, a longer detection delay is

required by the proposed algorithm to achieve the same false alarm probability and

communication cost constraints as in Chapter 5.
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Figure 6.1: Average detection delay versus false alarm probability with communica-
tion constraint of κ = 10 for different numbers of local sensors.

6.5 Summary

In this chapter, we develop a two-threshold based communication-efficient change

detection algorithm. It is shown the optimal choice of thresholds in the algorithm can

be obtained through one dimensional search. Performance is investigated for different

scenarios through both analysis and simulation, where the effects of approximations

used are evaluated. The proposed algorithm is easy to implement and does not require

synchronization.
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Chapter 7

Conclusions and future work

7.1 Conclusions

In this thesis, the problem of sequential detection is studied in a decentralized

sensing system, where local sensors are memoryless, energy constrained, receive inde-

pendent observations, and without full feedback from the fusion center. In addition

to traditional criteria of detection delay and the error probability, we introduce a new

constraint: the number of communications between local sensors and the fusion cen-

ter. This metric is able to reflect both the cost of establishing communication links

as well as overall energy consumption over time. The communication-efficient formu-

lations for both decentralized hypothesis testing and decentralized change detection

problems are proposed. The sensing system aims to minimize the overall detection

delay with constraints on both the error probability and communication cost.

In Chapter 3, an asymptotically person-by-person optimum detection framework

is developed. It is shown that when local sensing strategies are fixed, the reported

information to the fusion center is time dependent. The performance gain from such

time dependency is investigated, and the asymptotic optimality of the fusion center

test is established. The asymptotically relative efficiency of proposed algorithm with
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respect to the centralized strategy is expressed in closed form.

In Chapter 4, a lower complexity decentralized hypothesis testing algorithm is

proposed, where the transmission of local sensing reports are modeled as a Poisson

arrival process. Although the performance gain from the time dependency of reported

information is lost, the computational complexity is reduced. Note that for both

Chapter 3 and 4, the optimality of SPRT requires that the observations must obey

the exact distributions of H0 and H1, i.e., simple binary hypothesis testing. Thus, the

proposed algorithms may not perform optimally or even reasonably well in composite

hypothesis testing situations when observations are distributed as neither H0 nor H1.

In Chapter 5, the decentralized change detection problem with the a communica-

tion cost constraint is investigated. Following the same Poisson process transmission

model, a person-by-person optimum change detection algorithm is proposed. The

optimal threshold value is obtained through dynamic programming.

In Chapter 6, a two-threshold based decentralized change detection algorithm

is developed. The choices of threshold values in the algorithm are determined by

a combination of sequential detection analysis and constrained optimization. The

proposed sensing scheme does not require synchronization, and the fusion strategy is

easy to implement.

In each chapter, simulation results are investigated to explore the tradeoffs in pa-

rameter choices of the proposed algorithm.

7.2 Future work

• In the decentralized hypothesis testing problem formulated in Chapter 3, the
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transmission costs of different local sensors are modeled as non-identical. Fol-

low this formulation, the proposed decentralized change detection schemes in

Chapters 5 and 6 can be extended.

• In Chapter 4, we assume that when the local test statistic exceeds the thresholds,

the excess value over the threshold is negligible. Such an assumption results

in over-design of test threshold values. A more accurate expression for the

SPRT test thresholds, which takes the overshoot statistic into account may be

of interest in future work. A possible method to tighten the excess over the

boundary, Sv, would be to assume that it is uniformly distributed, and its mean

value would be

Eθ{Sv} =
1

2
Eθ{log

f1(X1)

f0(X0)
}, θ ∈ {0, 1}. (7.1)

More accurate SPRT threshold values may be achieved by reducing this mean

value from currently applied ones, i.e.,

a = log
β

1− α − E0{Sv} and b = log
1− β
α
− E1{Sv}. (7.2)

• In Chapters 4 and 5, the transmission of local sensing reports are modeled as

Poisson arrival processes. It is assumed that the fusion center receives either

zero or one report at each time slot. A more general case is of interest, where

multiple reports can be received at the same time.

• It is shown in Chapter 3 that when the local sensing policy is fixed, the reported

information forwarded to the fusion center is time dependent. Such time de-

pendency in the decentralized hypothesis testing problem is investigated, and



109

the performance gain is illustrated through simulations. However, in the algo-

rithms developed Chapter 5 and 6, the time dependent property of reported

information is not utilized. In the future research, it is of interest to investigate

the effect of the time dependency of reported information in the decentralized

change detection problem.

• In current research work, we assume that statistics at local sensors can be di-

rectly transmitted to the fusion center. For example, in the algorithm proposed

in Chapter 3, the reported information of a certain local center at time k is

defined as (3.4). However, in some applications, the control link between local

sensors and the fusion center is bandwidth limited. In such case, the sens-

ing information needs to be appropriately quantized by the local sensor before

sending to the fusion center, i.e.,

rk =


0, Tk = 0,

Q(gk), Tk = ±1,

(7.3)

with

Q(y) ∈ {0, 1, ....,L − 1}, y ∈ R, (7.4)

where Q(•) denotes the quantization scheme at the local sensor. {0, 1, ....,L−1}

is the available alphabet for data transmission and R represents the set of real

numbers. The statistic loss during the sensing report transmission and the

information structure of the fusion center observations are related to the local

quantization scheme. Thus, the design of Q(•) is crucial when control link is

bandwidth limited.
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• In the system model considered in this thesis, the fusion center makes final

decision based only on the reported information from local sensors. In some

applications, the fusion device can also take measurements of the sensing target

itself, and the fusion center test statistic is updated based on both reported and

observed information, i.e.,

$k = ∂k($k−1, rk, Xk), (7.5)

where $k is the fusion center test statistic at time k and ∂k is the fusion strat-

egy. rk = [r1
k, ..., r

M
k ] is reported information from local sensors and Xk is the

observation of the fusion center taken at time slot k. This configuration can be

viewed as a special case of our proposed system model, when there exists one

local sensor whose cost to transmit sensing reports equals zero. Using this sys-

tem model, a new communication-efficient decentralized detection formulation

can be achieved. It would be of interest to find detection strategies with such

formulation.
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