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Abstract

The emergence of the Internet of Things (IoT) has reinvigorated interest into the

distributed quickest change detection problem within wireless sensor networks. Al-

though a number of system designs addressing this problem exist in literature, the

vast scale of IoT has highlighted limitations of existing methods when adapted to

large networks. The purpose of this thesis is therefore to investigate and propose

both system designs and design methodologies that perform well in large networks.

Numerical analysis techniques are developed that allow for accurate threshold de-

sign of the Sequential Probability Ratio Test (SPRT) and Cumulative-Sum (CUSUM)

procedures with respect to desired error metrics. Tests designed using these proce-

dures are compared with those using Wald’s approximation to highlight the impact of

sequential test overshoot on test design. These techniques are shown to also provide

insight into the operation of these procedures over time.

Leveraging these techniques, two system designs are proposed to solve the dis-

tributed quickest change detection problem. With large sensor networks in mind,

multiple simultaneous transmissions within the network are permitted and analyzed

uniquely by a fusion center (FC), and the problem of limited bandwidth is considered.

These designs use the CUSUM procedure at local sensors to quantize local sensor

observations into binary summary reports that are transmitted to the FC, indicating
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the outcome of each local sensor’s CUSUM in each time slot. Probability mass func-

tions describing the probability of the fusion center receiving one or more reports from

local sensors in each time slot are computed using the developed CUSUM analysis

techniques. Accurate characterization of the local sensor reporting process allows the

fusion center to implement procedures based on Bayesian and minimax formulations

to the quickest change detection problem.

It is shown that using the minimax-based system design may perform well when

a number of assumptions are satisfied. This design is capable of scaling to large

networks and a methodology by which global and local thresholds may be chosen

to meet a desired false alarm rate constraint is proposed. It is also shown that the

performance of this design can be numerically computed for different choices of system

design variables.
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Chapter 1

Introduction

1.1 Motivation

Continuous advancement in sensor technology, especially in recent years, has resulted

in an abundance of small, cheap, low power sensors on the market. Improvements in

these areas has made it feasible to deploy distributed decision making systems in a

wide range of industries [28]. These kind of deployments allow for decisions to be made

on current events observed by the system to be based on more, and often increasingly

diverse, information. This can directly result in increased efficiency, robustness and

accuracy in many of these systems [20]. The Internet of Things (IoT), for example,

is one area that seeks to establish itself in everyday life by taking advantage of these

market trends.

The emergence of IoT has, and will continue to disrupt how businesses, gov-

ernments and consumers interact with the world. To put this in perspective, it is

estimated that by 2021 almost $5 trillion will have been spent on IoT in industries

such as manufacturing, healthcare, security and water management [29] [30]. As the

prevalence of IoT rises and smart objects within our daily routine continue to appear,
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there will be new potential in taking advantage of the vast amounts of data that can

be collected about our surrounding environments to make informed preventive or

reactionary decisions in response to current events.

In order to realize the potential brought about by distributed decision making

systems, renewed focus has been put on the field of sequential detection. The area of

sequential detection generally seeks to make statistic inference about an underlying

process through measurements taken sequentially in time [16]. At each time slot,

a decision maker either stops and declares a decision on the process observed, or

continues to observe measurements. Two main types of sequential detection problems

are hypothesis testing and change detection.

Sequential hypothesis testing problems seek to distinguish the correct hypotheses

from a set of observed measurements. For example, in the area of quality control, we

may want to determine whether a batch of items meets a minimum level of quality

guaranteed by the manufacturer. To do this, a characteristic of the item is tested

and measured. We can then design a statistical test that uses these measurements

to determine whether the batch of items meet or fail the guaranteed minimum level

of quality. In these types of problems, there is an acceptable probability of misclas-

sification specified by the test designer. The more strict the test is for classifying

observations correctly, the longer it will take for the test to reach a decision.

Sequential change detection problems seek to identify a change between events

from a set of measurements. In these problems, measurements are initially generated

according to a specified probability distribution, corresponding to a specific event.

At an unknown time, a change in the events occurs causing the statistical profile of

the measurements to change. This change results in measurements being generated
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from a different specified probability distribution. Similar to hypothesis testing, tests

designed to determine when this change in events occur also have some acceptable

error rate that is inversely proportional to how many observations, on average, these

tests take before reaching a decision.

Within the context of distributed decision making, both hypothesis testing and

change detection problems have been generalized for distributed sensor networks.

In such problems, there are a number of devices that observe events simultaneously.

Each device may be able to make a final decision itself, or it may forward results from

locally run statistical tests based only on its own observations to a global decision

maker, called a Fusion Center (FC), to make a final decision.

A specific use-case of sequential detection procedures within distributed, decen-

tralized systems is in monitoring and data collection systems for critical infrastructure

such as power grids, oil and gas networks, and roadways [16]. In these applications,

a large geographic area may need to be observed, thereby requiring data from a large

number of sensors at different locations. It is often not possible to have each sensor

forward its observations to the FC to make a decision. This could be due to band-

width restrictions, cost, or reliability, that limits the flow of information and requires

aspects of the decision making process to be decentralized [37].

There is also significant potential for the use of these procedures within IoT in a

healthcare setting [1] [19]. Distributed sensing systems can facilitate remote health

monitoring and allow for better management of fitness programs, chronic diseases

and elderly care. Various medical and non-medical devices, such as sensors installed

within the home, disease management, and imaging equipment are being proposed to

be used as smart devices to provide clinicians with valuable information that assist
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in making insightful decisions about a patient’s care. The integration of IoT within

healthcare is expected to reduce medical costs, increase quality of life and enrich the

user’s experience [14]. In order to fully realize this potential, sequential detection

procedures will be needed to process and make inferences that relate this data to

physical events.

As evident from the use-cases discussed above, future IoT systems will involve

the use of many sensors. Current approaches to sequential detection in distributed

systems do not scale well to systems with many sensors because they neglect over-

shoot and design complexity in these tests. Motivated by this, extensions to existing

distributed sequential detection procedures are needed to overcome these limitations.

1.2 Existing Literature

Historically, research into the distributed detection problem has often treated local

sensors as extensions of the FC. In such systems, detection procedures are imple-

mented globally. Local sensors immediately forward observations they receive to the

FC for processing. Early examples of these systems applied to the distributed hy-

pothesis testing problems can be seen in [37] and [38]. Similar formulations were later

extended to the distributed quickest change detection problem, such as in [8] and [40].

Motivated by hardware advances in recent years that have highlighted the poten-

tial in applying these processing procedures to large distributed systems, investigation

into decentralized versions of these system designs has become popular. The design

choice of shifting processing to local sensors is, in part, due to constraints on the band-

width needed for centralized solutions to operate. Wireless spectrum is currently at

a premium, and therefore solutions to these problems that are efficient in their use of
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spectrum are valued.

A decentralized solution to the distributed quickest change detection problem was

considered in [26]. The CUSUM procedure is used at local sensors to notify the FC

when a change is thought to have occurred. In the formulation considered, each local

sensor may witness the change in distribution at different times. A one-shot scheme

is used at the FC. This means that the FC concludes that a change has occurred

after the first local sensor decision is made. This kind of decision making is also

known as minimal combining. It is shown that this scheme performs well as the

mean time between false alarms tends to infinity, but its performance leaves room

for improvement at more modest false alarm rates. In these scenarios, it may be

beneficial to provide the FC with feedback as to the state of events at local sensors

instead of completely removing all processing from the FC. This work also investigates

expressions and relations that describe potential choices of detection thresholds at

local sensors, however explicit procedures that one can follow to design sensors that

satisfy maximum system error rates are not considered. Such procedures would be

useful in practice for system designers.

The distributed quickest change detection problem is also considered in [2]. Here,

the change in distribution is assumed to be witnessed across all local sensors simul-

taneously. Two system designs that utilize the CUSUM procedure at local sensors

are analyzed. In the first, each local sensor may communicate with the FC only

once. When a local sensor test terminates, it is not reinitialized. The FC concludes a

change has occurred when m out of a total of K local sensors have claimed a change

has occurred. The second design considered has the FC make a decision when m out

of K sensors agree simultaneously that a change has occurred. This happens when
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m local sensor CUSUMs are operating above their detection threshold. Asymptotic

analysis are performed on each design showing under which circumstances and at

which values of m these designs may perform well. A limitation of this work is that

given a set of sensor thresholds, a method of computing the associated FC false alarm

rate is not provided. This makes determination of an appropriate set of thresholds

to meet a desired false alarm rate difficult in practice.

In [45], the distributed hypothesis testing problem is investigated. In the system

considered, local sensors process observations using local log likelihood ratio statistics,

similar to the SPRT, with a set of predefined constants as thresholds. A single bit

is transmitted to the FC when the local statistic crosses above or below the set

of thresholds.The FC also implements a SPRT on the asynchronous incoming bits.

This work considers the potential of using additional bits to encode the amount

of sequential test overshoot that occurs at local sensors and shows how performance

improves as the number of bits increases. Offline simulation is discussed as a potential

method of choosing suitable thresholds for sensors when local sensors and the FC

implement SPRT-like procedures.

In each of these works, there are concerns in the ability of these systems to scale

to large networks. One reason for this is that, with the exception of [45], the occur-

rence of sequential test overshoot at local sensors is largely ignored. In networks with

many local sensors, the accumulated impact of overshoot can be significant. Some

system designs that account for local sensor overshoot are proposed in [47] and [35],

although these works analyze the distributed hypothesis testing problem. In [47],

overshoot is encoded into a time delay between the decision time of a local sensor and

its report transmission time. This time delay is subsequently decoded by the fusion
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center to determine the amount of overshoot. Despite accounting for overshoot with

this scheme, it adds unnecessary delay on system performance. In [35], quantization

strategies used by local sensors to summarize their observations are examined. Such

strategies may have potential for capturing overshoot in summary messages, but com-

plicated quantization schemes incur more overhead in local sensor messages. Given

that applications of these systems may involve low power sensors, such techniques

may be difficult to implement in certain circumstances. It is also unclear what kind

of quantization scheme should be used for the large sensor network situation under

consideration.

Another limitation of existing literature is that design procedures that can be

followed in practice to determine suitable sensor thresholds are not provided. Given

a maximum error constraint, it is desirable to be able to specify thresholds that

can design a system to meet this constraint within an acceptable tolerance. Over and

under designing sensors is especially troubling in large networks, where the cumulative

impact of this on performance may be significant.

1.3 Thesis Objectives

This thesis focuses on the quickest change detection problem within distributed, de-

centralized systems. Implementing sequential change detection procedures in such

systems involve the design of statistical tests at local sensors, which directly observe

measurements, and of the FC, charged with making a final decision. The objective

of our research is to provide a methodology by which we can design local sensors and

the FC and be capable of analyzing the performance of these systems. In doing this,

we investigate system designs based on Bayesian and minimax problem formulations,
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and discuss limitations of using the former in the design of large sensor networks.

1.4 Contributions

The main contributions of this thesis are as follows.

1. Numerical techniques are proposed to analyze the performance of Sequential

Probability Ratio Test (SPRT) and Cumulative-Sum, or CUSUM, procedures.

These techniques account for overshoot that occurs in these tests. The proposed

techniques are presented for Gaussian shift in mean and variance, Bernoulli, and

arbitrary discretely distributed measurements. The improved accuracy of us-

ing these techniques over using Wald’s approximations are shown. We extend

these numerical procedures to distributed systems to first analyze a centralized

CUSUM, and then to analyze repeating local sensor CUSUMs used in decen-

tralized systems that re-initialize on local test termination.

2. We propose two new distributed, decentralized systems based on minimax and

Bayesian quickest change detection frameworks and consider the restriction of

limited bandwidth at the FC. We apply our analysis of CUSUM to both designs

to describe the arrival and quantity of binary reports from local sensors at the

FC in terms of the probability of receiving 1, 2, ...,M reports in each time slot,

where M is the number of sensors in the system.

3. We identify issues restricting the design of distributed, decentralized systems

under the Bayesian problem formulation and motivate other avenues of solving

the quickest change detection in practice.

4. We propose a design methodology for a distributed, decentralized system based
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on the minimax quickest change detection formulation. We show how local

sensor and FC thresholds can be chosen to meet a desired false alarm rate

constraint and provide a method of analyzing the performance of these system

designs.

1.5 Organization of Thesis

The organization of this thesis is as follows.

Chapter 2 outlines important historical work and results regarding hypothesis

testing and change detection problems. Different formulations of these problems are

reviewed. The SPRT is described in detail as a way to address the hypothesis testing

problem. Limitations of this procedure are identified. An extension of the SPRT to

address the change detection problem, called the CUSUM procedure, is presented and

characterized through expressions describing its performance. An optimal stopping

approach to solving the change detection problem is also introduced. Finally, some

examples of recent work applying these procedures to distributed systems with and

without limits on communication are provided.

In Chapter 3, numerical procedures for analyzing the performance of the SPRT

and CUSUM procedures are presented. The accuracy of these calculations are shown

with respect to Monte Carlo simulations and the improvement over using conventional

approaches to their design are highlighted. The proposed procedures are applied to

Gaussian shift in mean, Gaussian shift in variance, Bernoulli, and arbitrary discrete

probability mass function (pmf) distributed observations. Examples on how these

procedures can be applied to the distributed quickest change detection problem are

discussed.
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In Chapter 4, a distributed, decentralized system design is proposed based on

a Bayesian formulation to the quickest change detection problem. This design uses

the procedures developed in Chapter 3 to analyze local sensor performance. The

FC updates its global statistic based on this analysis and the number of reports it

receives from local sensors in each time slot. Limitations in using this type of problem

formulation to address the quickest change detection problem from an implementation

standpoint are discussed.

Motivated by the limitations of the Bayesian formulated design, in Chapter 5,

a system design is proposed based on a minimax approach to the quickest change

detection problem. This system involves using the CUSUM procedure at both local

sensors and at the FC. The procedures of Chapter 3 are used to analyze the reporting

probabilities of local sensors and allow us to propose a design methodology by which

we can design local sensor and FC thresholds in this system according to a desired

false alarm rate. Given these thresholds, we can then analyze the performance of

a system design in terms of the expected detection delay for a guaranteed FC false

alarm rate.

In Chapter 6, conclusions of the thesis are provided. Summaries and key results

of the previous chapters are given. Avenues of future work are identified.
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Chapter 2

Background

2.1 Introduction

In this section, sequential hypothesis testing and sequential change detection will be

discussed. Historical and recent work will be identified to provide insight into this

research area. The Sequential Probability Ratio Test (SPRT) will be introduced as a

method of solving the hypothesis testing problem. Similarly, Bayesian and minimax

formulations of the sequential change detection problem will be discussed, with solu-

tions provided by the Shiryaev procedure and Page’s cumulative-sum (CUSUM) test,

respectively. Limitations of the above methods will also be identified.

2.2 Sequential Hypothesis Testing

Consider a sequence of Independent and Identically Distributed (IID) random vari-

ables X1, X2..., which are distributed according to pdf f0 or f1. This can be denoted
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as

H0 : X1, X2, ...,∼ f0 (2.1)

H1 : X1, X2, ...,∼ f1. (2.2)

The sequential hypothesis testing problem involves designing a test that observes

values of X1, X2, ..., to determine the true hypothesis. The performance of such tests

are described by error probabilities and expected detection delays. The two types

of error probabilities are false alarm and missed detection, denoted by α and β,

respectively. These error probabilities are defined by

α = P (choose H1|H0 is true) (2.3)

β = P (choose H0|H1 is true). (2.4)

When designing sequential tests, it is desirable to meet or exceed the error prob-

abilities specified by the designer, and to have the least expected detection delay for

either hypothesis being true. Wald proposed the SPRT as an optimal sequential test

for this problem [42]. This test tracks the likelihood ratio of subsequent observations

using the test statistic gk, where

gk =
k∑
i=1

ln(
f1(Xi)

f0(Xi)
). (2.5)

This test statistic is compared with two precomputed thresholds a and b after

each observation. The design of suitable test thresholds are dictated by the designer’s

choice of α and β. Wald also proposed in [42] that a suitable range of threshold values
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for such tests can be found using the inequalities

B ≥ β

1− α
(2.6)

A ≤ 1− β
α

. (2.7)

To determine values of A and B in practice, Wald showed that a sufficient method

to compute these thresholds such that they produce a test that always meets the

designer’s specified error probabilities is to consider the inequalities in (2.6) and (2.7)

as approximate equalities,

B ' 1− β
α

(2.8)

A ' β

1− α
. (2.9)

This approximation is known as Wald’s approximation. Define the logarithm of these

thresholds in the SPRT as

b = ln(B) (2.10)

a = ln(A). (2.11)

The SPRT detector structure is then

φS(gk) =


1 if gk ≥ b

0 if gk ≤ a

k ← k + 1 else.

(2.12)

where φS is the decision rule of the SPRT and gk is given by Equation (2.5). A value
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of φS(gk) = 1 indicates that the SPRT has chosen H1, and conversely, φS(gk) = 0

indicates the SPRT has chosen H0.

We define T as the number of observations needed for the SPRT to terminate, or

the stopping time of the SPRT. We can also express this more formally as T (φS), the

stopping time associated with decision rule φS. It was shown by Wald in [42] that

the SPRT will always terminate after a finite number of observations,

P(T <∞) = 1. (2.13)

Using the above expressions, Wald proposed approximate expressions in [42] for the

stopping time of these tests under H1 and H0

E1[T ] ' µ−1
1

aA(B − 1) + bB(1− A)

B − A
(2.14)

E0[T ] ' µ−1
0

a(B − 1) + b(1− A)

B − A
, (2.15)

where

µj = Ej[ln(
f1(Xj)

f0(Xj)
)] for j = 0, 1. (2.16)

The optimality of the SPRT was established through the Wald-Wolfowitz Theorem

[43]. Denote any other sequential decision rule as φ, such that

α(φ) ≤ α(φS) (2.17)

β(φ) ≤ β(φS), (2.18)

where α and β are the error probabilities associated with decision rules φS and φ,

as defined in Equations (2.3) and (2.4). Let Ej[T (φS)] denote the expected stopping
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time under Hj using φS, and Ej[T (φ)] the expected stopping time under Hj using φ.

The Wald-Wolfowitz theorem states that, for IID observations,

Ej[T (φ)] ≥ Ej[T (φS)] for j = 0, 1. (2.19)

In other words, for a given false alarm and missed detection probability, the SPRT

requires on average fewer observations than any other sequential decision procedure

[43].

An important point to note about the SPRT is that, in general, the boundaries

computed, a and b, will not provide with equality the desired error probability con-

straints. They will produce a test that provides a more conservative error probability.

By extension of the Wald-Wolfowitz theorem, this means that the expected delay of

such tests will increase.

These expressions ignore excess over the boundary, or overshoot. Overshoot occurs

because at test termination, the test statistic, gk, may not exactly be equal to a or b.

The distribution of this overshoot, gn−a or gn−b, determines the accuracy of Wald’s

approximations. If excess over the boundary is neglected, then (2.8) and (2.9) can be

considered to design tests that meet error constraints with equality [48]. Equations

(2.14) and (2.15) will also then compute the exact expected delay of the SPRT under

H1 and H0.

The impact of overshoot on the design of SPRTs is illustrated by example in

Figures 2.1(a) and 2.1(b). We denote the Gaussian pdf with mean µ and variance σ2

as

N(µ, σ2) =
1√

2πσ2
exp−

(x−µ)2

2σ2 . (2.20)
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Figure 2.1(a) shows the actual false alarm of N(0, 1) vs N(1, 1) SPRT with thresh-

olds a and b designed using (2.10) and (2.11), respectively, found via Monte Carlo

simulation. The α and β values used in these expressions were varied between 0.01

and 0.19. It is shown that the test designed by these expressions provides a lower

false alarm than desired, resulting in a longer expected detection delay as displayed

in Figure 2.1(b).
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Figure 2.1: Detectors implementing the SPRT for a N(0,1) vs N(1,1) test. The false
alarm and expected detection delay versus error probability, where α = β,
predicted by Wald for this test is compared to Monte Carlo simulation.

As error probabilities decrease, the boundaries a and b get more negative and

positive, respectively. As these boundaries tend towards negative and positive infinity,

the relative amount of excess versus value of the boundary becomes smaller. In

other words, these inequalities can be regarded as near equalities for very small error

probabilities [21].
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2.3 Sequential Change Detection

Consider now an IID sequence of observations corresponding to H0. At some point

in time, the true hypothesis may change to H1. This can be denoted by

H0 : X1, X2, ..., XΓ−1 ∼ f0 (2.21)

H1 : XΓ, XΓ+1, ..., XΓ+k ∼ f1, (2.22)

where Γ represents the unknown change time between distributions.

The goal of change detection tests is to detect this change of hypothesis as quickly

as possible according to some acceptable error constraint. Bayesian and minimax

formulations of this problem are described next.

2.3.1 Minimax Formulation

The minimax formulation assumes no known change point probability distribution

for Γ. Lorden proposed one version of this type of formulation [22]. He assumed that

the change time is determistic but unknown. Performance indices that characterize

solutions to this formulation are the worst-case expected detection delay and the

average run length (ARL) to false alarm.

The worst-case expected detection delay is defined as the expected delay for a

CUSUM to choose H1 under the worst-case initial condition, where the CUSUM test

statistic is equal to zero when the change in hypothesis from H0 to H1 occurs. The

average run length to false alarm is given by

ARL to FA = E0[T ], (2.23)
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where T is the stopping time of a CUSUM test. This can be thought of as the

expected time until a false alarm given that no change ever occurs, and thus H0 is

always true. We therefore seek solutions to the change detection problem that

min E1[T ]

subject to ARL to FA ≥ ζ.

(2.24)

Lorden showed that Page’s CUSUM test was an asymptotically optimal test in min-

imizing E1[T ] as ζ → ∞. Moustakides extended this result in [24] by showing that

the CUSUM test was optimal in the case of minimizing the worst case expected delay

for 1 < ζ <∞ among all stopping rules that satisfy E0[T ] = ζ.

The CUSUM test was originally proposed in [27], with decision rule defined by

φC(Sk) =

 1 if Sk ≥ h

k ← k + 1 else,
(2.25)

where Sk is the CUSUM test statistic given by

Sk = max
1≤j≤k

k∑
i=j

ln(
f1(Xi)

f0(Xi)
) (2.26)

and h is the detection threshold. A value of φC(Sk) = 1 indicates that the CUSUM

test has terminated and concluded H1 is true at time k. This means that a change has

occurred. If Sk has not surpassed h, H0 is considered true and another observation is

taken. Page showed that CUSUM can be expressed as a repeated sequence of SPRTs

with boundaries 0 and h, and an initial statistic S0 of zero. Each time the SPRT

exceeds the lower boundary, it is reset to zero. This can be seen by rewriting (2.26)
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as

Sk = max(Sk−1 + L(Xk), 0) for k ≥ 1 (2.27)

S0 = 0, (2.28)

where

Sk−1 =
k−1∑
j=1

L(Xj), (2.29)

and

L(Xj) = ln(
f1(Xj)

f0(Xj)
). (2.30)

This test is continuously run until the detection threshold is reached. Algorithm 1

summarizes the CUSUM procedure.

Algorithm 1 CUSUM test

1: k = 0
2: S0 = 0
3: loop:

4: Sk+1=Sk + log(
f1(Xk+1)

f0(Xk+1)

5: if Sk+1 ≥ h:
6: break
7: if Sk+1 < 0:
8: Sk+1 = 0
9: k = k + 1
10: end loop

Wald’s approximations can also be used to obtain expressions that relate the ARL

to false alarm and expected detection delay with the CUSUM detection threshold, h.
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This process is described in [32], where the following expressions are derived:

E0[T ] ' |eh − h− 1|
|µ0|

(2.31)

E1[T ] ' |e−h + h− 1|
|µ1|

(2.32)

where

µθ = Eθ[ln(
f1(Xθ)

f0(Xθ)
)] for θ = 0, 1. (2.33)

The approximations in these expressions have the same origin as (2.14) and (2.15).

2.3.2 Bayesian Formulation

In the Bayesian formulation of the change detection problem, the change time Γ is

assumed to be random with some known distribution. Often, this distribution is

considered to be geometric according to change parameter, ρ, that is assumed known

and a prior distribution, π0. This type of change distribution is popular because

of the memoryless property of geometric distributions. The prior distribution, π0,

indicates the probability that the change occurs before the start of this test. This

change distribution is characterized by

P (Γ = k) = π0Ik=0 + (1− π0)ρ(1− ρ)k−1Ik≥1, (2.34)

where Ik denotes the indicator function, defined as

Ik =

 1 if k = n

0 if k 6= n
(2.35)
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and

Ik≥n =

 1 if k ≥ n

0 if k < n.
(2.36)

The goal of this formulation is to detect a change in distribution as quickly as pos-

sible subject to a prescribed false alarm probability constraint. Unlike the previously

discussed minimax formulation, any solution to this problem has a false alarm proba-

bility that is less than one. The stopping time for such a test, T , can be optimized by

considering the trade off between the expected detection delay and probability of false

alarm by formulating an optimization problem. This trade off has been formulated

by Shiryaev in [31] as

infT [P0(T < Γ) + cE1[(T − Γ)+], (2.37)

where c denotes the relative cost of delay versus false alarm, and (x)+ = max(x, 0).

It was shown by Shiryaev that the posterior probability of a change occurring at

or before time k, πk, can be used as a suitable statistic in these problems [31]. The

posterior probability, πk is defined as

πk = P (Γ ≤ k|Fk) (2.38)

where Fk denotes the history of the prior observations up to the kth time slot. In

other words, the posterior probability is a function of all observations observed by

the detector. Under the geometric change distribution of (2.34), the sequence of
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posteriors, πk can be computed recursively by

πk =
(πk−1 + (1− πk−1)ρ)f1(Xk)

(πk−1 + (1− πk−1)ρ)f1(Xk) + (1− (πk−1 + (1− πk−1)ρ))f0(Xk)
. (2.39)

It was shown by Shiryaev in [31] that for an appropriately chosen threshold π∗,

the following decision rule is optimum in solving the above optimization problem:

φB(πk) =

 1 if πk ≥ π∗

k ← k + 1 else.
(2.40)

A value of φB(πk) = 1 indicates a change has occurred at time k, otherwise another

observation is taken.

2.4 Distributed Detection

More recently, sequential detection procedures have been applied to distributed prob-

lems. In such cases, there may be a number of detectors that each observe a different

sequence of observations. These sensors can either forward observations to a global

decision maker, called a fusion center (FC), or transmit summary reports of the ob-

servations. The FC is often in charge of making a final decision on the test, based on

the information that is sent.

A number of existing works have explored distributed hypothesis testing and

change detection. In [13], a decentralized system is proposed for the distributed

hypothesis testing problem. The SPRT is used at both local sensors and the FC.

The choice of using the SPRT globally is motivated by the fact that local detector

decisions, under certain conditions, can be viewed as an IID input process at the FC.
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Approximate expressions for the error probabilities and expected detection delays

at the fusion center are also provided, with conditions under which these approxi-

mations may become exact. A comparison of the proposed system to a distributed

system employing a centralized SPRT is provided.

A similar system is considered in [46], but proposes a level triggered sampling

mechanism to sample the log likelihood ratio function at local sensors. Such a pro-

cedure is similar to the SPRT. Thresholds are set a fixed distance from the starting

point of the test. When the accumulated log likelihood ratio passes either threshold,

a single bit indicating which threshold was passed is transmitted to the FC. The local

test is then restarted, with two new thresholds initiated the same fixed distance from

the current starting point. Fusion rules are derived for channels between local sensors

and the FC under different noise models. The asymptotic performance in terms of

detection delay of this system over different channels is found.

A Bayesian framework for decentralized hypothesis testing is proposed in [41].

Local sensors send summary messages of their observations to the FC, which performs

a sequential test globally to determine the true hypothesis. The design goal of this

system is to minimize the total expected cost resulting from the sequential procedure

over all admissible decision policies at the FC, and over all possible choices of local

decision functions. This problem is shown to be tractable for the case where the

system has full feedback and local memory restricted to past decisions, and a solution

is obtained via a unique fixed point solution to a Bellman equation, which is referred

to in [41] as dynamic programming. Finite horizon and infinite horizon versions of

this problem are considered.

A distributed change detection problem is considered in [26]. The change in
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distribution can occur at different times for each of the N sensors in the system.

A one-shot CUSUM scheme is proposed, where local sensors implement a CUSUM

procedure and only communicate once with the FC to signal a detection. A minimal

strategy is used at the FC, meaning that at the time of the first detection signaled

by a local sensor, an alarm is triggered. It is demonstrated that as the mean time

between false alarms tends to infinity, there is no loss of information at the FC by

employing this minimal one shot strategy compared to a centralized procedure, with

respect to Lorden’s criterion.

A distributed system where local sensors quantize their observations to a finite

alphabet and transmit them to the FC is considered in [25]. A CUSUM strategy

is applied at the FC on the received observations. The performance of the global

CUSUM test is related to the local sensor quantizers. A means of obtaining combined

detection and quantization strategies is proposed that utilize Lorden’s criterion.

In [40], a Bayesian formulation of the distributed change detection problem is

proposed, where a priori knowledge of the change distribution is available. An optimal

solution that utilizes dynamic programming is provided and evaluated numerically for

different observation distributions.

2.5 Detection with Energy Constraints

A number of approaches consider the problem of detection in energy constrained

environments. In [11] and [12], minimax and Bayesian formulations of the change

detection problem with energy constraints on a single sensor are considered. The

sensor’s energy is used by taking an observation and is replenished according to a

random process. Such a formulation could be useful in modelling wireless sensor
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networks powered by renewable energy. The authors propose a power allocation

scheme and detection strategy for such a problem.

A constraint on the expected number of observations that can be observed is

considered in [4] and [3]. The proposed approaches are shown to be asymptotically

optimal as the false alarm rate and false alarm probability, respectively, approach

zero. [5] builds off these works by considering this problem in a distributed system.

In addition to a cost of obtaining observations, a cost of communication between

local sensors and the FC is also considered. Two algorithms are proposed and a

performance analysis is provided.

In [44], the distributed change detection problem within a Bayesian framework is

considered. Constraints on both the probability of false alarm and on the number of

communications between local sensors and the FC are proposed in this problem. So-

lutions for systems with a constraint on the expected number of communications and

on the absolute number of communications are proposed. The CUSUM procedure is

used at local sensors. When the CUSUM procedure terminates at the local sensor, it

sends a binary report to the FC indicating it has reached a decision, before reinitial-

izing. The arrival of such reports at the FC is assumed to be a Poisson process. This

allows the FC to update its posterior statistic indicating its confidence in a change

having occurred in the system. The FC is in charge of making a final decision on

whether a change has occurred.
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Chapter 3

Numerical Computation Methods of Exact SPRT

Performance

3.1 Introduction

In this chapter, an algorithm is introduced that allows for overshoot to be taken

into account in the design of SPRT thresholds, allowing for more accurate tests with

respect to design parameters. This algorithm is based on generalizing recursive com-

putations of SPRT performance that were developed in [7] for Gaussian shift in mean

problems. Here, we extend this procedure to Gaussian shift in variance, Bernoulli,

and discrete probability mass function (pmf) type problems, and propose its applica-

tion to CUSUM tests. Results obtained from numerical simulations of the proposed

procedure are compared to those obtained from Monte Carlo trials and Wald’s ap-

proximation. Applications of the developed procedure to the distributed quickest

change detection problem are discussed.
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3.2 Algorithm

Consider the SPRT introduced in Chapter 2. After each observation, the log likelihood

ratio is computed and added to the cumulative statistic gk. Each log likelihood ratio

observation is a random variable, and as such, has its own probability density function

(pdf) that is dictated by the pdfs of H0 and H1. This is denoted in the equations

below as f(w). We note that the pdf of a sum of independent random variables is

their convolution.

Without loss of generality, from here on we assume H1 is true. If H0 is true, the

derivation is similar. Consider an SPRT with lower and upper log thresholds a and

b, respectively. The pdf of the SPRT statistic in stage k given that it reaches stage

k, fk(x), can be computed using the fact that the pdf of each log likelihood ratio

observation is IID.

Given that the test reaches stage 1 with probability one, the probability of reaching

stage k can be expressed in terms of the conditional probabilities

dk(H1) =
k∏
j=2

P(test reaches stage j | test reaches stage j − 1), (3.1)

where k ≥ 2. In the terms of the above equation, the probability of reaching SPRT

test stage k + 1 given that the test reaches stage k must be

P(test reaches stage k + 1 | test reaches stage k) =

∫ b

a

fk(x)dx, (3.2)

where

fk(x) =
(f ? f trunck−1 )(x)∫∞

−∞(f ? f trunck−1 )(t)dt
(3.3)
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and

f trunck−1 (x) =

 fk−1(x) a < x < b

0 otherwise.
(3.4)

The initial term of Equation (3.3), f1(x), is the pdf of a single log likelihood ratio

observation. In other words, the pdf of a SPRT statistic in stage k is the convolution

of a single log likelihood ratio observation pdf, f(w), and the truncated pdf of the

SPRT statistic at the previous delay stage, f trunck−1 (x), where this truncation occurs

between thresholds a and b. Normalization is needed in Equation (3.3) to ensure

fk(x) is a pdf because of this truncation. We can therefore obtain the probability

of reaching each SPRT stage by successive convolutions using numerical integration,

and integrating the result over the region between the SPRT thresholds.

The probability of choosing H1 at stage k given that stage k is reached is given

by

γk(H1) ≡ P(choose H1 at stage k | test reaches stage k)

=

∫ ∞
b

fk(x)dx

=

∫ ∞
−∞

fk(x)dx−
∫ b

−∞
fk(x)dx

= 1−
∫ b

−∞
fk(x)dx

= 1−
∫ b

−∞

∫ b

a

f(x− w)fk−1(w)dwdx

= 1−
∫ b

a

∫ b

−∞
f(x− w)fk−1(w)dxdw

= 1−
∫ b

a

F (b− w)fk−1(w)dw.

(3.5)

Using (3.2) and (3.5), the probability of choosing H1 at any stage is then



3.2. ALGORITHM 30

P(choose H1) =
∞∑
k=1

γk(H1)dk(H1) (3.6)

with corresponding missed detection probability

β = 1-P(choose H1). (3.7)

The average test length of an SPRT given H1, E1[T ], can be calculated as

E1[T ] =
∞∑
k=1

dk(H1). (3.8)

When (3.6) is truncated to a finite number of stages, N , a lower bound is achieved

for P (choose H1). An upper bound can also be obtained by adding the probability

of reaching stage N + 1 to this

N∑
k=1

γk(H1)dk(H1) < P (choose H1) <
N∑
k=1

γk(H1)dk(H1) + dN+1(H1). (3.9)

These bounds can be used to determine at which stage it is appropriate to ter-

minate execution of the procedure. We seek a value of N that, if we exceed it, will

insignificantly affect our computed delay and error probabilities. Using (3.9), we can

determine when proceeding to stage N + 1 will have diminishing returns on the com-

puted error probability compared to stopping at stage N . For our numerical results,

we used a value of N where continuing to N + 1 had an effect of less than three

orders of magnitude relative to stage N . In other words, this is when the probability

of reaching the next stage is three orders of magnitude less than the current error

probability. We define this difference in magnitude between delay stages as ε and



3.3. APPLICATION TO SPRT 31

show this method of termination in Algorithm 2.

3.3 Application to SPRT

The expressions in Section 3.2 are computed numerically for different observation

distributions and compared to results from Monte Carlo trials. Results for tests ob-

serving Gaussian shift in mean and variance, Bernoulli and discrete pmf observation

distributions are shown in the following sections. The structure of each detector is

dependent on the observation distribution and are derived for each case. All Monte

Carlo trials are performed using 105 iterations. Algorithm 2 shows pseudocode de-

scribing the implementation of the above expressions on SPRTs.

Algorithm 2 SPRT Analysis Algorithm when H1 is true

1: k = 1
2: while true:
3: generate f(x)
4: if k = 1:
5: f1(x) = f(x)
6: P(reach stage 1) = 1

7: P(reach stage 2) =
∫ b
a f1(x)dx

8: P(accept H1 at stage 1) =
∫∞
b f1(x)dx

9: P(accept H1 at any stage up to 1) = P(reach stage 1)P(accept H1 at stage 1)
10: error(1)= 1− P(accept H1 at any stage up to 1)

11: if
error(1)+P(reach stage 2)

P(reach stage 2)
≥ ε:

12: break
13: if k ≥ 2:
14: f trunck−1 =truncate(fk−1,a,b)

15: fk=(f trunck−1 ? f)(x)

16: P(reach stage k + 1) =
∫ b
a fk(x)dx

17: P(accept H1 at stage k) =
∫∞
b fk(x)dx

18: P(select H1 at any stage) = P(reach stage k)P(accept H1 at stage k) + P(select H1 at any stage)
19: error(k) = 1− P(select H1 at any stage)

20: if
error(k)+P(reach stage k + 1)

P(reach stage k + 1)
≥ ε:

21: break
22: k = k + 1
23: end while
24: Eθ[T ]=sum(P(reach stage k))
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3.3.1 Gaussian Shift in Mean

For the Gaussian shift in mean test, the pdf of the log likelihood ratio of each obser-

vation will also be Gaussian. For a N(0, 1) vs N(S, 1) test, the mean and variance of

this pdf and the corresponding test thresholds can be computed in terms of the log

likelihood function

n∑
k=1

L(Xk|θ) =

 choose H1 ≥ b

choose H0 ≤ a
(3.10)

where

L(Xk|θ) = ln(

1√
2πσ2

1

e−
(Xk|θ−S)

2

2

1√
2πσ2

0

e−
X2
k|θ
2

) (3.11)

= ln(eXk|θS−
S2

2 ) (3.12)

= Xk|θS −
S2

2
(3.13)

= Yk|θ ∼ N(µ
′

θ, σ
′2
θ ), θε{0, 1}. (3.14)

The mean and variance of the Gaussian log likelihood ratio pdf can be found by

taking the expectation and variance of (3.14) with respect to the true hypothesis.

This results in

µ
′

1 = S2

2
(3.15)

µ
′

0 = −S2

2
(3.16)

σ
′2
θ = S2. (3.17)
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The test thresholds, b and a, are found from (2.10) and (2.11), respectively.

Using (3.14), Algorithm 2 is applied to numerically compute the expected de-

tection delay and probability of missed detection of a N(0, 1) vs N(1, 1) test where

the test thresholds are designed using Wald’s approximation with varying desired

error probabilities. Our aim is to show that, for desired error probabilities α and β,

computing test thresholds using Wald’s approximation over designs the SPRT with

respect to desired error probabilities. This causes increased expected detection de-

lay. Using the technique developed above, we can better estimate the SPRT error

probabilities and expected detection delay. This can then be used to compute more

accurate test thresholds with respect to error constraints, resulting in lower expected

detection delay.

A comparison between results obtained by accounting for excess over the bound-

ary, or sequential test overshoot, using our proposed numerical computations, Monte

Carlo simulation and Wald’s approximation are shown in Figures 3.1(a) and 3.1(b).

Numerically computed values closely approximate those obtained via Monte Carlo,

which is a significant improvement in accuracy compared to using Wald’s approxima-

tion.
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Figure 3.1: A comparison between numerical and Monte Carlo for a N(0,1) vs N(1,1)
SPRT. Desired missed detection probability, β, is set equal to false alarm
probability, α.

3.3.2 Gaussian Shift in Variance

For the Gaussian shift in variance case, the log likelihood ratio test structure of (3.10)

for a N(0,1) vs N(0,V) test is now:

L(Xk|θ) = ln(

1√
2πV

e−
X2
k|θ
2V

1√
2π
e−

X2
k|θ
2

) (3.18)

= ln(
1√
V
e−

X2
k|θ
2V

+
X2
k|θ
2 ) (3.19)

= ln(
1√
V

)−
X2
k|θ

2V
+
X2
k|θ

2
(3.20)

which can be simplified and rearranged to

2(
a− ln( 1√

V
)

1− 1
V

) < X2
k|θ < 2(

b− ln( 1√
V

)

1− 1
V

). (3.21)
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This results in the detector structure

n∑
k=1

X2
k|θ =

 choose hypothesis 1 ≥ b
′
n

choose hypothesis 0 ≤ a
′
n

(3.22)

where

Xk|θ ∼ N(0, σ2
θ) (3.23)

and

b
′

n = 2(
b−nln( 1√

V
)

1− 1
V

) (3.24)

a
′

n = 2(
a−nln( 1√

V
)

1− 1
V

). (3.25)

In this case, the test thresholds a
′
n and b

′
n increase after every observation observed.

Under H0, X2
k|0 is first-order Chi-squared distributed, denoted as χ2(1), where

χ2(z) =
1

2
z
2G( z

2
)
x
z
2
−1e−

x
2 , (3.26)

and G(m) is the gamma function

G(m) = (m− 1)!. (3.27)

This follows from the fact that under H0, X1|0, X2|0, ..., Xn|0 are independent standard
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normal random variables. The sum of their squares

Q0 =
n∑
k=1

X2
k|0 (3.28)

is distributed according to the Chi-squared distribution with n degrees of freedom,

Q0 ∼ χ2(n). Since the pdf of the cumulative SPRT statistic is truncated after each

observation at boundaries a and b, it is more useful to consider each individual term

X2
k|0 as being first order Chi-squared distributed.

Similarly under H1, X2
k|1 is Gamma distributed, denoted by Γ(1

2
, 2V ), where

Γ(y, z) =
1

zyG(y)
xy−1e−

x
z . (3.29)

This is because under H1, X1|1, X2|1, ..., Xn|1 are independent zero mean Gaussian

random variables with variance V . The sum of their squares

Q1 =
n∑
k=1

X2
k|1 (3.30)

is distributed according to the Gamma distribution, Q1 ∼ Γ(n
2
, 2V ). Since again the

pdf of the cumulative SPRT statistic is truncated at boundaries a and b, it is similarly

more useful to consider each individual term X2
k|1 as being Gamma distributed with

n = 1.

In practice, performing the numerical computations with χ2(1) and Γ(1
2
, 2V ) dis-

tributions is impossible because these pdfs are not bounded at x = 0. This problem

is illustrated Figure 3.2(a). This issue was bypassed by truncating each pdf at a value

close to zero, x = t, and normalizing the resulting pdf by the respective distribution’s
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cdf evaluated at this truncation value, 1− F (t). For example, the value of t used in

Figure 3.2(b) to show the resulting pdfs was t = 0.01. This provides approximations

to these pdfs, denoted χ̃2(1) and Γ̃(1
2
, z), that are given by

χ̃2(1) =


1

2
1
2 G( 12 )

x−
1
2 e−

x
2

1−Fchi(t;1)
if x ≥ t

0 if x < t,

(3.31)

where Fchi(t; 1) is the cdf of a first order Chi-squared distribution

Fchi(t; 1) =
1

G(1
2
)
γ(

1

2
,
t

2
), (3.32)

and

Γ̃(
1

2
, z) =


1

z
1
2 G( 12 )

x−
1
2 e−

x
z

1−Fgamma(t; 1
2
,z)

if x ≥ t

0 if x < t,

(3.33)

where Fgamma(t;
1
2
, z) is the cdf of a Gamma distribution with shape parameter y = 1

2

Fgamma(t;
1

2
, z) =

1

G(1
2
)
γ(

1

2
,
t

z
). (3.34)

In these expressions, γ denotes the lower incomplete gamma function

γ(s, r) =

∫ r

0

xs−1e−xdx. (3.35)
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Figure 3.2: A comparison between the exact and approximate first order Chi-squared
and Gamma distributions with shape parameter y = 1

2
. The approximate

functions are defined at x = 0.

Expected detection delay and false alarm values are numerically computed and

compared to results from Monte Carlo simulation and Wald’s approximation in Fig-

ures 3.3(a) and 3.3(b). These approximate pdf’s were used in the Monte Carlo trials

to negate error caused by using different pdfs. Similar to the shift in mean case, results

from the numerical computations closely approximate those from Monte Carlo.
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Figure 3.3: A comparison between numerical and Monte Carlo results for a N(0,1) vs
N(0,3) Gaussian SPRT. Missed detection probability, β, is set equal to
false alarm probability, α.

3.3.3 Bernoulli Change in Parameter

For the change in parameter pθ Bernoulli test, the detector structure given in (3.10)

can be expanded as:

L(Xk|θ) = ln(
p
Xk|θ
1 (1− p1)1−Xk|θ

p
Xk|θ
0 (1− p0)1−Xk|θ

) (3.36)

= ln(p
Xk|θ
1 ) + ln((1− p1)1−Xk|θ)− ln(p

Xk|θ
0 )− ln((1− p0)1−Xk|θ)(3.37)

= Xk|θ(ln(
p1

p0

)− ln(
1− p1

1− p0

))− ln(
1− p0

1− p1

), (3.38)

which can be simplified and rearranged to

b

ln(p1
p0

)− ln(1−p1
1−p0 )

+
ln(1−p0

1−p1 )

ln(p1
p0

)− ln(1−p1
1−p0 )

< Xk|θ <
b

ln(p1
p0

)− ln(1−p1
1−p0 )

+
ln(1−p0

1−p1 )

ln(p1
p0

)− ln(1−p1
1−p0 )

.

(3.39)



3.3. APPLICATION TO SPRT 40

This results in the detector structure

n∑
k=1

Xk|θ =

 choose H1 ≥ b
′
n

choose H0 ≤ a
′
n

(3.40)

where

Xk|θ ∼ Bernoulli(pθ) (3.41)

b
′

n = b

ln(
p1
p0

)−ln(
1−p1
1−p0

)
+ n

ln(
1−p0
1−p1

)

ln(
p1
p0

)−ln(
1−p1
1−p0

)
(3.42)

a
′

n = b

ln(
p1
p0

)−ln(
1−p1
1−p0

)
+ n

ln(
1−p0
1−p1

)

ln(
p1
p0

)−ln(
1−p1
1−p0

)
. (3.43)

Similar to the Gaussian shift in variance case, test thresholds a
′
n and b

′
n increase after

every subsequent observation. In other words, test thresholds at stage n differ from the

test thresholds at stage n+1. Expected detection delay and probability of false alarm

are computed using the proposed numerical computations for an example with p0 =

0.04 and p1 = 0.15 and test thresholds computed from Wald’s approximation. These

results are compared in Figures 3.4(a) and 3.4(b) with those predicted from Wald and

from Monte Carlo simulation. Similar to the above cases, by accounting for sequential

test overshoot using our numerical computations we can closely approximate results

obtained from Monte Carlo simulation.
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Figure 3.4: A comparison between numerical and Monte Carlo results for a p=.04 vs
p=.15 Bernoulli SPRT. Missed detection probability, β, is set equal to
false alarm probability, α.

3.3.4 Change in Discrete Probability Mass Function Test

This procedure can also be applied to a change in pmf test. This can be considered

as a generalization of the change in parameter Bernoulli test discussed above, where

observations can now take on a finite set of discrete values. To do this, we expand

the log likelihood ratio function in the detector structure from (3.10) to

Zk|θ = L(Xk|θ) (3.44)

L(Xk|θ) = ln(
pn|H1(Xk|θ)

pn|H0(Xk|θ)
), (3.45)

where pn|H1(Xk|θ) and pn|H0(Xk|θ) are discrete pmfs with n non-zero terms describing

the observations under H1 and H0, respectively. The pmf of each log likelihood ratio
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sample can then be found by

PZk|θ(zi) =
∑

{j:Lk(xj)=zi}

pn|θ(xj). (3.46)

Expected detection delay and probability of false alarm for an example set of pmfs

are numerically computed and compared with those found from Monte Carlo simu-

lation and using Wald’s approximation in Figures 3.5(a) and 3.5(b). The examples

pmfs considered are p4|H1(x) = 0.587δ(x)+0.325δ(x−1)+0.078δ(x−2)+0.011δ(x−2)

and p4|H0(x) = 0.977δ(x)+0.023δ(x−1)+2.215 x 10−4δ(x−2)+1.210 x 10−6δ(x−3).

Similar to the above cases, close agreement is shown between numerically computed

results and those from Monte Carlo simulation.

We note that this detector structure can be used to analyze discrete hypothesis

distributions with any number of non-zero terms. This procedure can therefore be

used as an alternative method of analyzing the Bernoulli hypothesis distribution

discussed above in Section 3.3.3.
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Figure 3.5: A comparison between numerical and Monte Carlo results for the change
in pmf problem. Missed detection probability, β, is set equal to false
alarm probability, α.
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3.4 Application to CUSUM

CUSUM Analysis

A CUSUM test has lower and upper log thresholds 0 and h, respectively, where h

is called the detection threshold and is set by the system designer. The CUSUM

test can be analyzed using a similar procedure as what was shown for the SPRT in

Section 3.2. We note that like the SPRT, the pdf of the CUSUM statistic in stage k

given that it reaches stage k can be computed using the fact that the pdf of each log

likelihood ratio observation is IID.

A CUSUM test will only terminate if the statistic Sk exceeds threshold h. This

means the expression for computing the probability a test reaches stage k + 1 given

that stage k is reached in (3.2) changes to

P(test reaches stage k + 1 | test reaches stage k) =

∫ h

−∞
fk(x)dx (3.47)

where fk(x) can be found by

fk(x) =
(f ? f trunck−1 )(x)∫∞

−∞(f ? f trunck−1 )(t)dt
(3.48)

and

f trunck−1 (x) =

 fk−1(x) 0 ≤ x < h

0 otherwise.
(3.49)

When a CUSUM test statistic, Sk, falls below the lower threshold 0, the test reini-

tializes itself by setting Sk = 0 and continuing operation. At each CUSUM stage, the



3.4. APPLICATION TO CUSUM 44

probability that the test will reset is found by

P (reset at stage k) =

∫ 0−

−∞
fk(x)dx. (3.50)

This probability is added to the current stage’s truncated pdf at f trunck (0) prior

to observing the next observation. This allows for the potential of a reset to be

accounted for in the subsequent CUSUM stage’s pdf. The probability of choosing H1

in stage k+1 given that stage k+1 is reached and the expected run length given either

hypothesis are found using (3.5) and (3.8) with this new pdf. A modified version of

Algorithm 2 is shown below to highlight the differences in this approach versus that

of the SPRT analysis.

Algorithm 3 CUSUM Analysis Algorithm

1: k = 1
2: while true:
3: generate pdf f(x)
4: if k = 1:
5: f1(x) = f(x)
6: P(reach stage 1) = 1

7: P(reach stage 2) =
∫ h
−∞ f1(x)dx

8: P(accept H1 at stage 1) =
∫∞
b f1(x)dx

9: if
P(accept H1 at stage 1)+P(reach stage 2)

P(reach stage 2)
≥ ε:

10: break
11: if k ≥ 2:

12: P(reset at stage k-1) =
∫ 0−

−∞ fk−1(x)

13: f trunck−1 =truncate(fk−1, 0, h)

14: f trunck−1 (0) = f trunck−1 (0) + P(reset at stage k-1)

15: fk=(f trunck−1 ? f)(x)

16: P(reach stage k + 1) =
∫ h
−∞ fk(x)dx

17: P(accept H1 at stage k) =
∫∞
h fk(x)dx

18: if
P(accept H1 at stage k)+P(reach stage k + 1)

P(reach stage k + 1)
≥ ε:

19: break
20: k = k + 1
21: end while
22: Eθ[T ]=sum(P(reach stage k))

The probability of accepting H1 unconditional on the delay stage is computed

using the proposed procedure and compared to Monte Carlo simulation in the two
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figures below. The unconditional probability of accepting H1 at each delay stage is

computed using

P (choose H1 at stage k) = γk(H1)rk(H1). (3.51)

Figure 3.6 shows close agreement between the numerical computations and Monte

Carlo simulation at each delay stage when H1 is true.
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Figure 3.6: Probability of accepting H1 in a N(0, 1) vs N(1, 1) test with H1 true and
h = ln(25). 106 Monte Carlo trials are distributed over 38 delay stages to
compute the probabilities.

When H0 is true in Figure 3.7, there is minor discrepancy between Monte Carlo

and numerical results. This is because the estimation of low probabilities from Monte

Carlo simulations requires a very large number of trials. It was therefore necessary to
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verify that the numerically computed results fall within the 90% confidence interval of

the probabilities generated by Monte Carlo simulation. The 90% confidence interval

is computed using

90% Confidence Interval = 1.645

√
P (1− P )

W
, (3.52)

where P is the P (choose H1 at stage k) and W is the number of Monte Carlo trials [9].

In Figure 3.7, 106 Monte Carlo trials are distributed over 55 delay stages, resulting

in W = 106

55
. A value of P = 0.005, for example, results in a confidence interval

of 8.6 x 10−4. The numerically computed results in Figure 3.7 fall within the 90%

confidence interval of those from Monte Carlo and are therefore verified to be accurate.
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Figure 3.7: Probability of accepting H1 in a N(0, 1) vs N(1, 1) test with H0 true
and h = ln(25). 106 Monte Carlo trials are used over 55 delay stages in
simulating these probabilities.
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Single SPRT Analysis

An alternative method of analyzing the performance of a CUSUM test can also be

done through direct analysis of an SPRT.This method is useful specifically for es-

timating the ARL to false alarm and ARL to detection of a CUSUM test. The

application of the analysis of a single SPRT to CUSUM takes advantage of the fact

that, as discussed in Chapter 2, CUSUM can be represented as a sequence of repeated

SPRTs.

Consider a SPRT with initial statistic gk = 0 and upper and lower log thresholds h

and 0, respectively. Let P (H1) be the probability that an SPRT terminates at upper

threshold h. Eθ[Th] and Eθ[T0] are defined as the average number of samples for the

SPRT given Hθ conditional on the test ending on h and 0, respectively. Page showed

that the probability that n SPRTs choose H0 before choosing H1 is geometrically

distributed, (1 − P (H1))nP (H1). The expected number of tests that choose H0 is

therefore

E[(1− P (H1))nP (H1)] =
1− P (H1)

P (H1)
. (3.53)

It follows that the ARL of a CUSUM test given Hθ being the true hypothesis is

ARL =
1− P (H1)

P (H1)
Eθ[T0] + Eθ[Th]

=
Eθ[T ]

P (H1)
, θε{0, 1}.

(3.54)

where Eθ[T ] is the expected number of samples until the SPRT terminates at either

0 or h, given Hθ.

When H0 is true, P (H1) is the probability of false alarm, α, of a SPRT. Equation
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(3.54) therefore provides the ARL to false alarm and can be simplified to

ARL to false alarm =
E0[T ]

α
. (3.55)

Given H1, P (H1) is the probability of correct detection of an SPRT, 1− β. Equation

(3.54) then provides the ARL to detection and can similarly be simplified to

ARL to detection =
E1[T ]

1− β
. (3.56)

The numerators of both equations can be computed via (3.8) and the denominator

via (3.6). The ARL to false alarm and detection of CUSUM tests are computed for

varying detection thresholds and compared to results from Monte Carlo simulation

for the same observation distributions considered in Section 3.3 in Figures 3.8, 3.9,

3.10 and 3.11. In each case, the ARL values resulting from the proposed numerical

computations show much closer agreement to those obtained from Monte Carlo sim-

ulation than those resulting from the use of (2.31) and (2.32), which are rooted in

Wald’s approximation.

We remark that the staircase effect seen in Figures 3.10 and 3.11 is due to the

discretization of the hypothesis distributions in these scenarios. This discretization

causes discontinuities in the achievable ARL to false alarm and detection ranges. For

these scenarios, randomization at the detector is needed to be able to achieve all

possible ARL to false alarm or ARL to detection values when varying h.
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Figure 3.8: A comparison of ARL computed using the proposed method, Monte
Carlo, and from (2.31) and (2.32) for a shift in mean N(0,1) vs N(1,1)
CUSUM test.
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Figure 3.9: A comparison of ARL between the proposed method, Monte Carlo and
from (2.31) and (2.32) for a shift in variance N(0,1) vs N(0,3) CUSUM
test.
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Figure 3.10: A comparison of ARL between the proposed method, Monte Carlo, and
from (2.31) and (2.32) for a Bernoulli p1=0.005 vs p0=0.2 CUSUM test.
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Figure 3.11: A comparison of ARL between the proposed method, Monte Carlo, and
from (2.31) and (2.32) for a discrete pmf where p4|H1(x) = 0.587δ(x) +
0.325δ(x− 1) + 0.078δ(x− 2) + 0.011δ(x− 3) and p4|H0(x) = 0.977δ(x) +
0.023δ(x− 1) + 2.215x10−4δ(x− 2) + 1.210x10−6δ(x− 3).
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3.5 Applications to Distributed Quickest Change Detection

In this section, we will apply the above CUSUM analysis to two types of distributed

change detection systems. The first, a centralized system, is useful when communica-

tion between local sensors and the FC is not limited. The second example considers a

decentralized distributed system. Local sensors implement CUSUM procedures and

forward their decisions to a FC at local test termination. We show in this example

how our proposed CUSUM analysis can be extended to analyze the performance of

CUSUMs that reinitialize themselves after transmitting reports to the FC. This can

subsequently be used to approximate the pmfs describing the arrival of reports at the

FC.

3.5.1 Centralized, Distributed Change Detection

The first distributed system we will consider is a centralized system. We assume that

sensors are each located in a unique geographic location. They observe sequentially

in time and immediately transmit each observation directly to the FC. The local

sensors do not process these observations, instead forwarding them directly to the

FC for processing. Observations at the same sensor are IID and it is assumed that

observations between sensors are independent conditioned on H0 or H1. All sensor

observations are distributed according to the same distribution, either H0 or H1. A

number of different methods have been proposed to be implemented at the FC to

process observations, but we will focus on analyzing the use of a CUSUM at the FC

to make a final decision on whether a change has occurred.

Suppose there are M sensors in our distributed system and that the FC cannot

take its own observations. This means that instead of the typical CUSUM discussed in
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Section 3.4, where observations are observed sequentially in time, we have M observa-

tions observed by the FC simultaneously in each time slot. Due to the independence

between sensors and of subsequent observations, this makes the pdf of the CUSUM

statistic at time k = 1 equivalent to a single sensor’s CUSUM statistic at time k = M .

We can then modify the Eθ[T ] terms in Equations (3.55) and (3.56) by dividing by

M to obtain an approximation to the ARL of this centralized system. This procedure

is performed and compared with results from Monte Carlo simulation in Figures 3.12

and 3.13.

0 5 10 15 20 25
h (linear scale)

0

2

4

6

8

10

12

AR
L 

to
 D

et
ec

tio
n

Monte Carlo
Proposed

(a) ARL to FA

5 10 15 20 25
h (linear scale)

0

20

40

60

80

100

120

140

160
AR

L 
to

 F
al

se
 A

la
rm

Monte Carlo
Proposed

(b) Expected Detection Delay

Figure 3.12: A comparison of ARL to detection between the proposed method and
Monte Carlo for a centralized CUSUM with M = 2 under varying de-
tection thresholds.
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Figure 3.13: A comparison of ARL to false alarm between the proposed method and
Monte Carlo for a centralized CUSUM with M = 3 under varying de-
tection thresholds.

Using this procedure, we can then numerically compute the performance of a

centralized CUSUM for different values of M . Such an analysis is useful as it provides

intuition of how, in the best case, the performance of a distributed system improves

with increasing M . The worst case expected detection delay, EDD, defined as

EDD = E[(τF − Γ)+] (3.57)

with Γ = 0, was computed numerically and plotted as a function of the false alarm

rate, RFA, computed by

RFA =
1

ARL to FA
. (3.58)

This is shown for varying number of sensors, M , in the system and and is plotted in

Figure 3.14.
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Figure 3.14: Trade-off curve for expected detection delay versus false alarm rate in a
N(0,1) vs N(0.5,1) test.

3.5.2 Decentralized, Distributed Change Detection

The CUSUM analysis of Section 3.4 can also be applied to decentralized distributed

systems. In such systems, local sensors implement their own detection procedure to

offload processing from the FC and summarize their observations by transmitting

reports periodically. The FC analyzes these reports and makes a final decision on

the state of the system. When a local sensor sends a report, one strategy is for

the local sensor to reinitialize itself and continue processing observations. We can

extend the above process to analyze local sensor CUSUM procedures that reinitialize

themselves after transmitting a report. We will focus on when the CUSUM procedure

is reinitialized to zero, but a similar procedure follows for any reset strategy.
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We extend the procedure proposed in Section 3.4 by accounting for the probability

of reinitializing to zero after each observation. This reinitialization probability is

computed by

P(reinitialize to zero at stage k + 1) =

∫ ∞
b

fk+1(x)dx. (3.59)

This probability is then added to the current stages pdf at fk+1(0) prior to observ-

ing the next observation. This therefore allows for the possibility of a local sensor’s

CUSUM terminating and reinitializing itself to zero to be accounted for in the sub-

sequent stages pdf. We can then compute the probability of choosing H1 in delay

stage k + 1 given that stage k + 1 is reached, γk+1(Hθ), using Equation (3.5) for a

CUSUM test that after each observation has some probability of transmitting a re-

port and reinitializing itself to zero. This modified CUSUM analysis used to analyze

the repeating CUSUM is shown in Algorithm 4.

We can then use this procedure to compute the probability of receiving reports

at the FC. We define P(rk+1 = n|Hθ,k+1) and P(rk+1 ≥ L|Hθ,k+1), θε{0, 1}, as the

probability of receiving n reports and the probability of receiving greater than or equal

to L reports at the fusion center given hypothesis θ at time slot k + 1, respectively.

These probabilities can be found using

P(rk+1 ≥ L|Hθ,k+1) =
M∑
n=L

P(rk+1 = n|Hθ,k+1) (3.60)

where

P(rk+1 = n|Hθ,k+1) =

(
M

n

)
γk+1(Hθ)

n(1− γk+1(Hθ))
M−n. (3.61)
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Algorithm 4 Repeating CUSUM Analysis with Reinitialization to Zero

1: k = 1
2: while true:
3: generate pdf f(x)
4: if k = 1:
5: f1(x) = f(x)
6: P(reach stage 1) = 1

7: P(reach stage 2) =
∫ h
−∞ f1(x)dx

8: P(accept H1 at stage 1) =
∫∞
b f1(x)dx

9: if
P(accept H1 at stage 1)+P(reach stage 2)

P(reach stage 2)
≥ ε:

10: break
11: if k ≥ 2:

12: P(reset at stage k-1) =
∫ 0−

−∞ fk−1(x)

13: P(reinitialize to zero at stage k − 1)=
∫∞
b fk−1(x)dx

14: f trunck−1 =truncate(fk−1, 0, h)

15: f trunck−1 (0) = f trunck−1 (0) + P(reset at stage k-1) + P(reinitialize to zero at stage k − 1)

16: fk=(f trunck−1 ? f)(x)

17: P(reach stage k + 1) =
∫ h
−∞ fk(x)dx

18: P(accept H1 at stage k) =
∫∞
h fk(x)dx

19: if
P(accept H1 at stage k)+P(reach stage k + 1)

P(reach stage k + 1)
≥ ε:

20: break
21: k = k + 1
22: end while
23: Eθ[T ]=sum(P(reach stage k))

Equation (3.61) can be interpreted as follows. In a system with M sensors, there

is a possibility of receiving n reports simultaneously, where n ≤M . For a single set of

sensors, the probability of receiving n reports at time k is geometrically distributed,

characterized by the probability that n independent sensors choose H1, multiplied

by the probability (M − n) sensors do not choose H1. There is, however, a total of

M choose n different combinations of local sensors that can provide n reports to the

fusion center. Equation (3.61) accounts for all these different possible combinations.

Using the fact that receiving 1, 2, ...,M reports are independent events, Equation

(3.60) includes these terms in a summation to determine the probability of the number

of received reports exceeding a specified amount, L, that is between 1 and M .

Figure 3.15 shows the accuracy of this procedure by computing the probability of

receiving one, two and greater than or equal to three reports at the FC given H1, and
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the probability of receiving one report given H0 between the proposed procedure and

Monte Carlo simulation of the distributed system. These probabilities are plotted as

a function of absolute time from the start of system operation at k = 0. The change is

assumed to have happened at time k = 0 when H1 is true, or to have never happened

when H0 is true. We remark that there is an initial transient period where the value

of P(rk+1 = n|Hθ) and P(rk+1 ≥ L|Hθ) is time varying, but reaches a steady state

value after a short period of time. This transient period occurs both at the start of

system operation and immediately after a change between H0 and H1 occurs. These

two periods overlap in Figure 3.15 because it is assumed that the change time Γ = 0.

In general, our proposed numerical computations closely approximate the report-

ing probabilities of local sensors found from Monte Carlo simulation. Minor discrep-

ancy is seen in Figure 3.15(c) because of time dependency inherent in the reporting

sequence of local sensors that is being neglected in our computations. The origin of

this time dependence is from the transient period at the start of local sensor oper-

ation, or immediately after reinitialization, where the probability of a local sensor

transmitting a report is smallest and time varying. Although our proposed procedure

captures this period at the start of system operation at k = 0, it does not consider the

transients that occur when local sensors reinitialize mid-operation. These transients

lower the probability of receiving a report immediately after one or more local sensors

transmit a report until the reinitialized local sensor reaches this steady state region

again.

The effect of this time dependence is greatest when considering the probability

of receiving multiple simultaneous reports. To illustrate this, consider P (rk+1 =

3|H1,k+1) in a system with M = 3. When a local sensor transmits a report, it’s
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test statistic is reinitialized to zero, thereby making the probability that the same

local sensor immediately transmits another report very small. In this example, the

probability of receiving three simultaneous reports is unlikely if one of the local sensors

has recently reported and been reinitialized. The probability of receiving one report is

impacted less because although one sensor may have been reinitialized, two others are

still operating in their steady state region and are likely to report. We will consider

conditions on when this time dependence may be smallest in Chapter 5.
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Figure 3.15: A comparison between numerically computed and Monte Carlo gener-
ated P (rk+1 = 1|H1,k+1), P (rk+1 = 2|H1,k+1), P (rk+1 ≥ 3|H1,k+1) and
P (rk+1 = 1|H0,k+1) for a N(0, 1) vs N(0.5, 1) test with hl = ln(15),
M = 13, and L = 3.

3.6 Conclusion

In this chapter, a procedure for analyzing SPRT performance, originally developed

in [7] for the Gaussian shift in mean problem, was extended to shift in variance,

Bernoulli, and arbitrary pmf tests. Two methods of adapting this procedure to an-

alyze the CUSUM test were proposed. These strategies allow for more accurate test
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thresholds to be designed in comparison to those obtained via Wald’s approxima-

tion by accounting for the overshoot that occurs within sequential tests. They also

provide insight into the operation of the SPRT and CUSUM after each observation.

Two applications of these procedures to the distributed change detection problem

were presented.
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Chapter 4

A Bayesian Approach to Quickest Change

Detection in Large Sensor Networks under

Bandwidth Constraints

4.1 Introduction

In this chapter, a Bayesian formulation to the distributed quickest change detection

problem is investigated. Existing literature on the Bayesian distributed quickest de-

tection problem often treat communication between local sensors and the FC at one

of its two extremes. In [44], communication is highly restricted. A single report can

be received at the FC in each time slot. If local sensors transmit more than one

report, these additional reports are ignored by the FC. In these situations, valuable

information collected by local sensors is being discarded. In large sensor networks,

time slots with multiple reports may often occur, resulting in a significant waste of

resources within the network. There is also potential for performance improvement

by considering this additional information.

The other extreme of this problem is considered in [40]. In this system design,
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local sensors immediately transmit observations to the FC for processing. Although

this procedure is optimal for the FC, the requirement of all observations being visible

to the FC is often too resource demanding to implement in practice within large

wireless sensor networks.

We therefore investigate a decentralized solution to this problem, where a band-

width constraint is imposed at the FC that limits the number of local sensor reports

that can be received in a single time slot. Multiple reports may be received and

uniquely considered in each time slot as long as they do not exceed the bandwidth

constraint of the system.

The CUSUM procedure is used at local sensors to quantize local sensor observa-

tions into binary reports that are transmitted to the FC, indicating the outcome of

each local sensor’s CUSUM in each time slot. The numerical procedures of Chapter

3 are used to analyze the local sensor CUSUMs and generate pmfs describing the

probability of the FC receiving one or more reports in each time slot.

The FC treats the discrete stream of reports as an optimal stopping problem,

which, as described in Chapter 2, it solves by tracking the posterior probability of a

change occurring after each observation and comparing to a pre-computed threshold.

The pmfs describing the arrival of reports at the FC under hypotheses H0 and H1

allow for up to a limit of L ≥ 1 different posterior update functions to be used,

where L is the bandwidth constraint restricting the number of simultaneous reports

received.

We investigate the performance of the proposed system when design parameters

required within such a Bayesian formulation are varied. We also discuss limitations of

this formulation in addressing research objectives and towards solving the distributed
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change detection problem in large sensor networks.

4.2 System Model

We consider a distributed system of M sensors. These sensors observe a sequence of

observations X i
1,X i

2,..., where i denotes the local sensor, iε{1, 2, ..,M}. Each sensor is

located in a unique geographic location, and the distances between sensors are large

enough that no sensors observe the same sequence of observations. Observations

between each sensor can therefore be considered as independent conditioned on H0 or

H1. Observations at the same sensor are also IID in time. At some point in time, the

observations at all sensors change from being generated by H0 to H1. It is assumed

that this change occurs simultaneously for all sensors.

This change can be described for sensor i, 1 ≤ i ≤M , as

H0 : X i
1, X

i
2, ..., X

i
Γ−1, ∼ f0 (4.1)

H1 : X i
Γ, X

i
Γ+1, ..., X

i
k, ∼ f1 (4.2)

where Γ is the change time.

This change time is assumed to be random and unknown. For this formulation,

we will consider Γ to be geometrically distributed because of the memoryless property

of this distribution. Γ is therefore described by π0, the probability that the change

occurs before the observations are observed, and by ρ, the prior probability that a

change occurs at each time slot regardless of the observation observed. The parameter

ρ is specified by the physical environment, and thus the system designer has no control

over it. Often this parameter can be difficult to accurately estimate ahead of time,
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and therefore designing a system that is robust to different values of this parameter

is desirable. Using notation from Chapter 2, the change time distribution can be

expressed as

P (Γ = k) = π0Ik=0 + ρ(1− ρ)k−1Ik≥1, (4.3)

where Ik denotes the indicator function of an event at time k and is zero otherwise.

When a local sensor decides that there has been a change in distribution, it sends

a binary-valued report to the FC. The FC is considered as the global decision maker.

It is in charge of making a final decision on whether a change has occurred, using

information collected from local sensors. The sequence of received reports at the FC

can be considered as follows: the FC observes a value of rk equal to 1, 2, ...,M , where

a value of rk = j means that j sensors have made a decision and sent a report to the

FC in the same time slot, where 0 ≤ j ≤ M . If a report is not received, the value of

rk is zero. This sequence of the numbers of received reports, rk, at times k = 0, 1, 2...,

is used to update a cumulative statistic at the FC at each time slot, which is updated

based on how many reports are received from local sensors.

Let the fusion center’s expected detection delay and rate at which false alarms are

generated be defined, respectively, as

EFC
DD = E[(τF − Γ)+] (4.4)

RFC
FA =

1

ARL to FA
, (4.5)

where τF is the FC’s decision time, Γ is the time at which a change occurs, and

(x)+ = max(x, 0). The goal of the FC is to obtain a decision policy, δ, with minimum
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expected delay subject to the following false alarm constraint:

min
δ

EFC
DD (4.6)

subject to RFC
FA ≤ αFC . (4.7)

In this formulation, αFC is the desired maximum rate of false alarms.

In our analysis of the proposed systems, we will assume the change time occurs at

Γ = 0 under H1 and does not occur under H0. We also assume that local sensors are

only able to have one-way communication with the fusion center. Communications

among local sensors is also not possible. The communication between local sensors

and the fusion center is assumed to be error-free unless specified otherwise.

4.3 Local Sensing Algorithm

In order to design distributed, decentralized systems, we must consider the design of

both the FC and of local sensors to ensure our false alarm rate constraint is satisfied.

Local sensors observe observations sequentially in time. In order for the global system

to minimize the delay in detecting the change in distributions, local sensors must also

utilize an optimal decision policy.

Due to its optimality properties discussed in [24], and its simplicity by possessing

a single parameter, the CUSUM algorithm is proposed to be used at local sensors.

This local strategy involves tracking the likelihood ratio for all observations using

Sk = max
1≤j≤k

k∑
i=j

ln(
f1(Xi)

f0(Xi)
), (4.8)

until the test statistic Sk exceeds local CUSUM threshold hl. If the test statistic
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exceeds this threshold at time k, a binary report is generated by local sensor i and

transmitted to the fusion center,

rik =

 1 Sk ≥ hl

0 Sk < hl.
(4.9)

The generation of one bit local sensor reports acts as a method of quantizing the

observations accumulated by local sensors into indicators of whether a local sensor

CUSUM has terminated at each time k.

When a local sensor’s CUSUM terminates and a report is transmitted, the local

sensor statistic, Sk, is reinitialized to zero. We remark that reinitialization to Sk = 0

implies that H0 is favoured a priori, while reinitialization to Sk = hl implies that

H1 is favoured a priori. We justify reinitializing to Sk = 0 because it is the most

conservative strategy for detecting a change among all other possible values. This

will result in the smallest possible FC false alarm rate and the largest FC detection

delay among all other possible resetting strategies.

We also note that reinitialization to Sk = 0 creates a union of likelihood ratio tests

for all possible change times, and by extension, a union of CUSUM tests. This allows

us to guarantee a lower bound on the ARL to FA when designing local sensors.

4.4 Fusion Center Algorithm

At the fusion center, local sensor reports are received sequentially in time. At each

time slot, the fusion center can receive one of {0,1,2..,M} local sensor reports, where

M is the number of local sensors in the system. When the report generation policy

at local sensors is fixed, the number of reports arriving at the FC can be described
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by distinct pmfs under H1 and H0.

For this problem, we consider the case where there are bandwidth constraints

preventing rk+1 ≥ L reports from being received at the FC in a single time slot, thus

requiring the simultaneous arrival of L to M reports to be treated as a single event.

This type of bandwidth constraint is realistic for large sensor networks, where the

number of reports received in a single time slot could be very large, exceeding the

communication bandwidth to the FC. In the case where bandwidth is not the limiting

factor, the value of L can be set equal to M , so that every possible report quantity

can be considered.

In Section 3.5.2, a repeating CUSUM with reinitializion to zero after choosing H1

was analyzed. A procedure was proposed that allows us to compute the probability

of receiving n reports and the probability of receiving greater than or equal to L

reports in a distributed system at the FC for a given time slot. It was however noted

that these probabilities are time varying both at the start of system operation and

immediately after a change in distribution occurs, but reach steady state values after

a short period of time.

We propose that the procedure of Section 3.5.2 is used to compute the pmfs de-

scribing the arrival of reports at the FC and assume that the steady state probabilities

computed using (3.60) and (3.61) are valid in describing the local sensor reporting

probability of the system being considered. This assumption is applicable when the

system is operating before, or a period of time after, a change in distribution has

occurred, but not during the time period encompassing the change time. This allows

us to avoid the possibility of a set of time varying report pmfs and assume constant

reporting probabilities. We can then drop time k from (3.60) and (3.61) in computing
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the report arrival pmfs under H1 and H0.

By fixing our local sensor strategy and associating them with time invariant report-

ing pmfs, we can follow existing literature in treating the quickest change detection

problem at the FC as an optimal stopping problem. As discussed in Chapter 2.3.2,

this can be solved by tracking the posterior probability that a change has occurred

at each time slot [31]. We now generalize this procedure to account for multiple

simultaneous reports with bandwidth constraints at the FC.

Let πk+1 denote the posterior probability that a change occurred at the (k + 1)th

time slot, given by

πk+1 = P (H1|rk+1) (4.10)

= P (Γ ≤ k + 1|Fk+1), (4.11)

where Fk+1 denotes the history of the reporting sequence up to the (k+1)th time slot.

Based on Bayes rule, πk+1 can be computed recursively by the following formula:

πk+1 =


Φ0(πk) if rk+1 = 0

Φn(πk, rk+1) if rk+1 = n, 1 ≤ n ≤ L− 1

ΦL(πk, rk+1) if rk+1 ≥ L, L ≤M .

(4.12)

Update function Φ0(πk) is used when a report is not received at the FC in a time

slot. It updates the posterior probability based on the assumed prior probability that

a change occurs in each time slot, ρ. It can be computed by

Φ0(πk) = πk + (1− πk)ρ. (4.13)
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Functions Φn(πk, rk+1) and ΦL(πk, rk+1) are used to update the posterior probabilities

when 1 ≤ n < L and n ≥ L reports are received in a time slot, respectively. They

are computed using Bayes theorem as follows:

Φn(πk, rk+1) =
P (H1)P (rk+1 = n|H1)

P (rk+1 = n)

=
P (H1)P (rk+1 = n|H1)

P (rk+1 = n,H1) + P (rk+1 = n,H0)

=
Φ0(πk)P (rk+1 = n|H1)

Φ0(πk)P (rk+1 = n|H1) + (1− Φ0(πk))P (rk+1 = n|H0)

(4.14)

and

ΦL(πk, rk+1) =
Φ0(πk)P (rk+1 ≥ L|H1)

Φ0(πk)P (rk+1 ≥ L|H1) + (1− Φ0(πk))P (rk+1 ≥ L|H0)
(4.15)

respectively, where P (Hθ) = Φ0(πk), θ ε {0,1}, is the prior probability of Hθ at the

(k + 1)th time slot, and P (rk+1 ≥ L|Hθ) and P (rk+1 = n|Hθ) are given by the steady

state values of Equations (3.60) and (3.61),respectively. The procedure used by local

sensors and the FC is summarized in Algorithm 5.

Algorithm 5 Bayesian FC and Local Sensor Algorithm

1: while πk < π∗:
2: for i=1 to M :
3: gik+1=gik+ln(

f1(Xk)
f0(Xk)

)

4: if gik+1 ≥ hl:
5: rk+1 = rk+1 + 1
6: if gik+1 < 0:

7: gik+1 = 0

8: end for
9: πk+1 = Φrk+1 (πk, rk+1)
10: k = k + 1
11: end while
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FC Threshold Design Procedure (Offline)

An offline procedure is used by the FC to determine the best global threshold, π∗, to

use for a given number of local sensors M , detection threshold hl, and false alarm rate

constraint αFC . Without loss of generality, for this analysis we will consider the case

where L = M reports can be uniquely received and considered at the fusion center

at any time.

Consider again the FC design goal given by (4.6). For a given αFC , the total

expected cost of this problem can be expressed as

R(δ) = RFC
FA + cdE

FC
DD, (4.16)

where cd is a non negative constant that denotes the relative cost of a delay in correct

detection compared to a false alarm. The value of this constant is set to achieve

a desired system false alarm rate. Since the Bayes risk R(δ) is additive over time,

minimization of (4.16) can be done using the following approach:

At each time slot, we define the optimal cost J∗opt(Fk), where J∗opt(Fk) is determined

by choosing the action that provides the minimum cost at each time slot. In our

model, the decision the fusion center can make at each time slot is to continue or stop

the test. We define this optimal cost as

J∗opt(Fk) = min(Jstop(Fk), Jcont(Fk)). (4.17)

For each time k, this optimal cost J∗opt(Fk) can be written as a function of only πk,

J∗opt(πk), and the optimal stopping policy can be restricted to a class of decision

functions that only depend on πk [17].
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We define the cost incurred by stopping, Jstop(πk), as the uncertainty in deciding

that a change has occurred. This is expressed as

Jstop(πk) = 1− πk. (4.18)

The cost of continuing is defined as the cost of taking an additional sample and then

choosing the optimal decision. This is expressed as

Jcont(πk) = cdπk + E[J∗opt(πk+1)], (4.19)

where

E[J∗opt(πk+1)] = P (rk+1 = 0)J∗opt(Φ
0(πk)) +

M∑
q=1

P (rk+1 = q)J∗opt(Φ
q(πk, rk+1)), (4.20)

and

P (rk+1 = q) = πkP (rk+1 = q|H1,k+1) + (1− πk)P (rk+1 = q|H0,k+1). (4.21)

In (4.19), cdπk is the detection delay cost associated with taking another observa-

tion. E[J∗opt(πk+1)] is the expected cost of choosing the optimal decision at the next

time slot, where the possibility of receiving rk = 0, 1, 2, ...,M reports is considered

with their associated posterior update functions from Equation (4.12).

It can be shown that both Jstop(πk) and Jcont(πk) are nonnegative concave func-

tions on the interval [0,1], with Jstop(1)=Jcont(1)=0 [40]. Under these assumptions,

there is an optimal strategy at the fusion center which solves the above minimization
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problem by applying the decision rule

φB(πk) =

 ≥ π∗ decide change occurs at time k

else k ← k + 1.
(4.22)

where the optimal threshold at the fusion center, π∗, is found from the solution to

Jstop(πk) = Jcont(πk). (4.23)

In order to compute the optimal threshold for this problem, the cost functions

Jstop and Jcont must be computed for different possible πk values. This was done

by partitioning the range of the πk into 1000 points, ie. {0, 0.001, 0.002, ..., 1}. For

each πk value, the cost of stopping was computed using Equation (4.18) . The cost of

continuing was computed by recursively computing (4.19) and (4.20) until a maximum

of 1000 iterations had been performed. Due to the infinite horizon nature of this

problem, it is necessary to truncate the number of delay stages considered. This

truncation point was chosen to be 1000 based on experimental results for the scenarios

considered. The iterations terminate and set a value for E[J∗opt(πk+1)] when the

posterior πk = 1, or if all 1000 iterations have been performed [6]. In this case,

1−πk is returned. The optimum cost for each πk was then computed by (4.17). This

strategy is summarized in Algorithm 6.

Algorithm 6 Dynamic Programming Algorithm for determining π∗

1: for all πk:
2: if E[J∗opt(πk+1)] has recursively been called > 1000 times:

3: return 1-πk
4: if πk = 1:
5: return 1-πk
6: J∗opt(πk)=min(1-πk, cdπk + E[J∗opt(πk+1)])

7: end for
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Once the optimal threshold π∗ is determined from the intersection of Jstop(πk) and

Jcont(πk), the performance metrics RFC
FA and EFC

DD can be computed for given constant

cd. These quantities may be obtained for each value of cd via Monte Carlo simulation.

Pairs of (RFC
FA, E

FC
DD) for this optimal strategy can then be obtained by varying cd,

obtaining the corresponding optimal threshold π∗, and performing these Monte Carlo

simulations, thus generating a trade-off curve for the optimal policy. This strategy is

described in [39],[40].

4.5 Results

The performance of the system proposed in this chapter is evaluated under vary-

ing conditions. In doing this, the effect of design variables on system performance

is investigated. System performance is defined to be the expected detection delay

achieved given a guaranteed FC false alarm rate.

First, the effect of the number of sensors, M , on system performance is considered.

Figure 4.1 shows a N(0, 1) vs N(0.5, 1) test with L = 3, ρ = 0.001 and hl = ln(10). M

is increased by increments of four, from M = 3 to M = 15. Monte Carlo simulations

with 105 trials are performed using Algorithm 5 with varying π∗ between (0, 1) to

determine (RFC
FA, E

FC
DD) pairs. As is expected in distributed systems, increasing M

results in improved system performance. We remark though that this improvement

is smaller than what would be expected from adding redundancy in the from of

additional sensors in a distributed system.
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Figure 4.1: Performance of the proposed distributed system observing a N(0, 1) vs
N(0.5, 1) test with hl = ln(10), ρ = 0.001, L = 3 and 105 Monte Carlo
trials. The number of systems in the system, M , is varied between M = 3
to M = 15.

Figure 4.2 shows the effect of bandwidth constraint, L, on system performance.

To exemplify this, the mean of H1 in the shift in mean Gaussian test is increased to

N(0, 1) vs N(1, 1). This is done to examine the case where reports are sent frequently

under H1, thereby increasing the likelihood of receiving multiple reports simultane-

ously. The system design variables are chosen to be M = 11, hl = ln(10), ρ = 0.001

and L varied from L = 1 to L = 3. Similar to the previous example, Algorithm 5 is

used within a Monte Carlo simulation of 105 trials to generate the (RFC
FA, E

FC
DD) pairs

for each π∗ tested.
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The performance of the distributed system improves with increasing L. The im-

provement from L = 1 to L = 2 is significant because of the high likelihood of receiving

more than one report in each time slot for this example. Further improvement can be

seen from L = 2 to L = 3. We note that this improvement is smaller because there

is a lower likelihood of receiving three reports simultaneously and taking advantage

of this additional bandwidth.
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Figure 4.2: Performance of the proposed distributed system observing a N(0, 1) vs
N(1, 1) test with hl = ln(10), ρ = 0.001, M = 11 and 105 Monte Carlo
trials. The bandwidth constraint, L, is varied from L = 1 to L = 3.

Next, the performance of the system is evaluated under different values of ρ. As

discussed in Section 4.2, estimating ρ can often be difficult in practice. A system

designer may determine local sensor and FC thresholds to maintain a desired error

rate under an assumed value of ρ that may differ when operating under real world



4.5. RESULTS 76

conditions. We therefore explore the impact of ρ on the false alarm rate and expected

detection delay of the distributed system for fixed threshold pairs (hl, π
∗).

Table 4.1 shows RFC
FA and EFC

DD for a N(0, 1) vs N(1, 1) test with M = 11, L = 3

and hl = ln(10) with varying assumed ρ values. The FC threshold, π∗, is held fixed

for each possible value of ρ. Both RFC
FA and EFC

DD are affected by the assumed value

of ρ. In particular, the effect of ρ on RFC
FA makes it difficult for a system designed to

guarantee a specific false alarm rate unless near exact knowledge of ρ is known prior

to designing FC and local sensor thresholds.

RFC
FA EFC

DD

π∗ ρ = 0.01 ρ = 0.001 ρ = 0.0005 ρ = 0.01 ρ = 0.001 ρ = 0.0005

0.05 0.194 0.0484 0.0367 2.429 2.909 3.157

0.25 0.0624 0.0269 0.0230 2.5997 3.2144 3.271

0.5 0.0400 0.0215 0.0186 3.1413 3.574 4.0667

0.75 0.0295 0.0177 0.0158 3.234 4.2235 4.291

0.99 0.0159 0.0114 0.0106 4.332 5.1707 5.1976

Table 4.1: Values of RFC
FA and EFC

DD computed for a N(0, 1) vs N(1, 1) test using fixed
FC threshold π∗, M , hl and L. The change parameter, ρ, is varied to show
the difference in false alarm rate and expected detection delay performance
caused by different values of ρ.
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4.6 Limitations

Although this chapter proposes aspects of a process by which we can extend the

optimal stopping approach to quickest change detection explored in literature to dis-

tributed, decentralized systems, a number of design challenges limit the ability of us-

ing this system to meet the objectives that motivate this work. We recall these goals

from Section 1.3; we seek to propose a design methodology by which we can determine

local sensor and FC test thresholds in order to satisfy desired error constraints, and

to be capable of analyzing the performance of our distributed, decentralized system.

The limitations discussed next limit the feasibility of using a Bayesian formulation

towards, in practice, addressing the distributed quickest change detection problem.

Operating Range of a Set of Thresholds

The interdependence between local sensor false alarm rate and FC false alarm rate

creates one challenge in proposing design methodologies for this system. Our choice

of local sensor threshold hl in this system dictates which FC false alarm rates can be

physically realized. In other words, for a given value of hl, we are limited in what

RFC
FA we can design our system to achieve with any choice of π∗.

This can be illustrated by investigating the global FC false alarm rate as a function

of π∗ with fixed hl. Figure 4.3 shows aN(0, 1) vsN(0.5, 1) test with ρ = 0.001, M = 3,

and L = 3. In Figure 4.3(a), the value of hl is fixed to hl = ln(3) and in Figure 4.3(b)

to hl = ln(47). The offline procedure of Algorithm 6 is performed for values of π∗

between [0, 1] and then Algorithm 5 is performed to determine the corresponding

value of RFC
FA for each value of π∗.

As seen in these figures, an operating range exists of potential values of RFC
FA
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that be physically specified by varying π∗ between [0, 1] for any fixed value of hl. In

general, increasing hl results in an operating range that contains smaller values of

RFC
FA. Given a value of hl, we can therefore only design the FC to achieve a fixed

range of RFC
FA values. This relationship makes an appropriate choice of hl, prior to

designing the FC, a necessity when seeking to propose a distributed system design

that will satisfy false alarm requirements.
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Figure 4.3: Fusion Center false alarm rate as a function of π∗ for fixed local sensor
threshold hl.

Computational Complexity in Large Sensor Networks

Significant computational resource involved in treating the arrival of reports at the FC

as an optimal stopping problem presents another limitation to this formulation. This

is especially evident when designing large sensor networks and can be seen through

investigation of Equation (4.20). The ability to determine an optimal FC threshold,

π∗, relies on the recursive computation of Equations (4.17), (4.19) and (4.20), where

the optimal cost function of (4.17) has real valued arguments. This requires Jcont(πk)

and Jstop(πk) to be computed for every possible value of πk. We also remark that the
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number of terms in (4.20) is equal to (M+1), which results in the number of function

calls needed to compute Jopt(πk) to increase exponentially as a function of (M + 1),

as seen in line 6 of Algorithm 6. This makes designing a suitable π∗ for distributed

systems with large M challenging in practice.

Performance Sensitivity to ρ

We also recall that, as investigated in Table 4.1 of Section 4.5, the performance of

our system is sensitive to the assumed value of change parameter ρ. This sensitivity

is rooted in the recursive use of ρ in the updating of πk after each observation in

(4.12). Given that ρ is often difficult to accurately estimate, the physically realized

performance of our system could significantly change from what is simulated based on

mismatch between the value of ρ that we expect and that which occurs, in practice,

in our physical environment.

Necessity of Monte Carlo Simulations

Finally, we emphasize the necessity of Monte Carlo simulation in order to generate

(RFC
FA, E

FC
DD) trade-off curves that describe the performance of the optimal decision

policy of the proposed system. Without doing this, it is not possible to associate

a value of π∗ with its accompanying RFC
FA under the given system conditions. This

presents limitations on the flexibility of designing this system to meet low false alarm

rates.
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4.7 Conclusion

In this chapter, we investigated a Bayesian system design to the distributed, decen-

tralized quickest change detection problem. Local sensors implemented CUSUMs that

reinitialize to zero after transmitting reports. These repeating CUSUMs were ana-

lyzed using the procedures developed in Chapter 3, to characterize pmfs describing

the arrival of reports at the FC. These pmfs were subsequently used to implement a

Bayesian form of decision making at the FC.

Although using an optimal stopping approach to processing the reporting sequence

from local sensors is optimal, in practice, the system designer is faced with a number

of limitations and challenges when implementing this type of system. The design

challenges discussed within this chapter motivate the investigation of an alternative

formulation in Chapter 5 to this problem in order to address our research objectives.
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Chapter 5

A Minimax Approach to Quickest Change

Detection in Large Sensor Networks under

Bandwidth Constraints

5.1 Introduction

Motivated by the limitations of the system discussed in Chapter 4, we propose an al-

ternative distributed, decentralized system design based on the minimax formulation

to the quickest change detection problem.

A number of distributed system designs have been proposed in literature based on

a minimax formulation to the quickest change detection problem, however many of

these designs do not scale well to large wireless sensor networks. In [34], examples of

different system designs are summarized and their performance compared. A central-

ized CUSUM is used as an upper-bound on the performance that can be achieved in

these distributed systems. Another design considered has local sensors forward their

quantized observations to a FC, which runs a global CUSUM. Local sensors transmit

all observations in this design, quantized to a binary value. A limitation of these two
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designs are that they may be too resource demanding for implementation in large

wireless sensor networks because of restrictions on sensor battery power and available

wireless spectrum. It is therefore desirable for significant offloading of processing to

local sensors.

Decentralized system designs are also considered in this comparative work. These

designs use CUSUMs at local sensors and different fusion strategies at the FC based

on minimal and maximal combining of decision reports, such as those in [36] and

[23]. These designs however tend to not be very efficient or do not perform as well

for moderate false alarm rates typical of practical applications [34] [2].

The design of local sensors in these systems also do not consider overshoot that

occurs within these tests. In large systems, the accumulated impact of overshoot

on system performance can be significant. In [47], overshoot is addressed in the

distributed hypothesis testing problem by encoding it into a time delay between the

sampling time of local sensors and the transmission time. The FC decodes this time

delay to determine the amount of overshoot in each transmission. Such a procedure,

however, will inevitably impact system delay performance. Quantization strategies,

similar to those considered in [35], could be used to include overshoot in local sensor

decision reports, however the trade-off between improved performance and increased

power consumption of such strategies has to be carefully managed. Novel ways of

accounting for overshoot that occurs in local sensor tests is therefore an active research

area.

Another limitation of existing work is a lack of design methodologies for deter-

mining appropriate FC and local sensor thresholds, where needed. Given a desirable

tolerance for errors, it is often unclear how one can design a system to meet such a
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constraint.

The system proposed in this chapter therefore seeks to address some of these

limitations in existing literature. The CUSUM procedure is used at local sensors to

quantize local sensor observations into binary reports that are transmitted to the FC,

indicating the outcome of each local sensor’s CUSUM in each time slot. The CUSUM

analysis procedures proposed in Chapter 3 are used to generate pmfs describing the

probability of the FC receiving one or more reports from local sensors in each time

slot. The FC uses the report arrival pmfs to implement a globally run CUSUM.

Motivated by our intended application to large wireless sensor networks, we allow

multiple reports to be received at the FC simultaneously and consider the case of

bandwidth restrictions that limit the number of reports that can be received and

considered uniquely in each time slot. We also propose a methodology by which global

and local thresholds can be chosen to meet a desired false alarm rate constraint. The

performance of the proposed system is evaluated for different numbers of sensors, M ,

and under varying bandwidth constraints, L, 1 ≤ L ≤M .

5.2 System Model

We consider a system of M sensors within our distributed system. These sen-

sors observe a sequence of observations X i
1,X i

2,..., where i denotes the local sensor,

iε{1, 2, ..,M}. Each sensor is located in a unique geographic location, and the dis-

tance between sensors is large enough that no sensors observe the same sequence of

observations. Observations between each sensor can therefore be considered as inde-

pendent conditioned on H0 or H1. Observations at the same sensor are IID. At some

point in time, the observations at all sensors change from being generated by H0 to
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H1. It is assumed that this change occurs simultaneously for all sensors.

This change can be described as

H0 : X i
1, X

i
2, ..., X

i
Γ−1, ∼ f0 (5.1)

H1 : X i
Γ, X

i
Γ+1, ..., X

i
k, ∼ f1 (5.2)

where Γ is the change time. Γ is considered as an unknown but deterministic quantity.

Unlike in Chapter 4, there is no prior assumption needed to characterize the change

time distribution.

When a local sensor decides that there has been a change in distribution, it sends

a binary-valued report to the FC. The FC is considered as the global decision maker.

It is in charge of making a final decision on whether a change has occurred, using

information collected from local sensors. The sequence of received reports at the FC

can be considered as follows: the FC observes a value of rk equal to 1, 2, ...,M , where

a value of rk = j means that j sensors have made a decision and sent a report to the

FC in the same time slot, where 0 ≤ j ≤ M . If a report is not received, the value of

rk is zero. This sequence of the numbers of received reports, rk, at times k = 0, 1, 2...,

is used to update a cumulative statistic at the FC at each time slot, which is updated

based on how many reports are received from local sensors.

Let the fusion center’s expected detection delay and rate at which false alarms are

generated be defined, respectively, as

EFC
DD = E[(τF − Γ)+] (5.3)

RFC
FA =

1

ARL to FA
, (5.4)
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where τF is the FC’s decision time, Γ is the time at which a change occurs, and

(x)+ = max(x, 0). The goal of the FC is to obtain a decision policy, δ, with minimum

delay subject to the following false alarm constraint:

min
δ

EFC
DD (5.5)

subject to RFC
FA ≤ αFC , (5.6)

where αFC is the desired rate of false alarms.

In our analysis, we will assume the change time occurs at Γ = 0 under H1 and

does not occur under H0. We also assume that local sensors are only able to have

one-way communication with the fusion center. Communications among local sensors

is also not possible. The communication between local sensors and the fusion center

is assumed to be error-free unless specified otherwise.

5.3 Local Sensing Algorithm

The procedure implemented by local sensors will follow that of the system discussed

in Chapter 4. We refer to Section 4.3 for details on local sensor operation and jus-

tification for its reinitialization strategy. In summary, local sensors will each employ

a CUSUM procedure. A binary report, rk, is generated by a local sensor and trans-

mitted to the FC when test statistic, Sk, exceeds its local detection threshold. Local

sensors will be reinitialized to zero after transmitting a report and continue to process

observations until a final decision is made by the FC.
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5.4 Fusion Center Algorithm

At the fusion center, local sensor reports are received sequentially in time. At each

time slot, the fusion center can receive one of {0,1,2..,M} local sensor reports, where

M is the number of local sensors in the system. When the report generation policy

at local sensors is fixed, the numbers of reports arriving at the FC can be described

by distinct pmfs under H1 and H0.

For this problem, we consider the case where there are bandwidth constraints

preventing rk+1 ≥ L reports from being received at the FC in a single time slot, thus

requiring the simultaneous arrival of L to M reports to be treated as a single event.

This type of bandwidth constraint is realistic for large sensor networks, where the

number of reports received in a single time slot could be very large, exceeding the

communication bandwidth to the FC. In the case where bandwidth is not the limiting

factor, the value of L can be set equal to M , so that every possible report quantity

can be considered.

Similar to the system of Chapter 4, we refer back to the procedure discussed in

Section 3.5.2 of analyzing a repeating CUSUM that reinitializes to zero after choosing

H1. We again use this procedure to compute the probability of receiving n reports and

the probability of receiving greater than or equal to L reports in each time slot. This

allows us to determine the pmf describing the arrival of reports at the FC, defined as

Rθ(Xk), under H1 and H0.

We also refer back to the system operation assumptions discussed in Section 4.4.

In summary, the steady state reporting probabilities computed for a system design

using Equations (3.60) and (3.61) can be considered valid a short period of time after

the start of system operation, and either before, or some time after, a change in
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distribution has occurred. Immediately following a change, the report arrival pmfs,

R0(Xk) and R1(Xk), become time varying for a short period of time. This contradicts

the abrupt change model between H0 and H1 used in the classic CUSUM problem.

Although the change between H0 and H1 in this problem is abrupt at local sensors,

the change between R0(Xk) and R1(Xk) at the FC is gradual after the change point.

In order to avoid time varying report pmfs within our FC CUSUM procedure, we

assume that the FC is always operating in this steady state region, before or a period

of time after a change has occurred.

This allows us to bypass this transient period and neglect the time dependence in

Equations (3.60) and (3.61), allowing us to assume constant pmfs under H1 and H0.

We can therefore express the report arrival pmfs as

Rθ(Xk) =


P (rk+1 = 0|Hθ) if Xk = 0

P (rk+1 = n|Hθ) if Xk = n, for n = 1, 2, .., L− 1

P (rk+1 ≥ L|Hθ) if Xk = L, for n = L,L+ 1, ..,M.

(5.7)

When there is a bandwidth constraint of L = 1 on our system, this simplifies to a

Bernoulli distribution

Rθ(Xk) =

 P (rk+1 = 0|Hθ) if Xk = 0

P (rk+1 ≥ 1|Hθ) if Xk = 1.
(5.8)

An example of a set of report arrival distributions for a system with M = 5 observing

a N(0, 1) vs N(1, 1) test is shown in Figure 5.1 for L = 1 and L = 5.



5.4. FUSION CENTER ALGORITHM 88

0 1 2 3 4 5
Number of Reports

0.0

0.1

0.2

0.3

0.4

0.5

R 1
(x

)

P(rk = n|H1)

(a) L = 5

0 1 2 3 4 5
Number of Reports

0.0

0.2

0.4

0.6

0.8

1.0

R 0
(x

)

P(rk = n|H0)

(b) L = 5

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Number of Reports

0.0

0.2

0.4

0.6

0.8

1.0

R 1
(x

)

P(rk = n|H1)

(c) L = 1

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Number of Reports

0.0

0.2

0.4

0.6

0.8

1.0

R 0
(x

)

P(rk = n|H0)

(d) L = 1

Figure 5.1: Numerically computed pdfs given H1 and H0 characterizing the arrival
of reports for a N(0, 1) vs N(1, 1) test with hl = ln(25) and M = 5. A
bandwidth constraint of L = 5 and L = 1 is used.

We can use these pmfs to implement a CUSUM at the FC, where the global

statistic is denoted

zk = max
1≤j≤k

k∑
i=j

ln(
R1(Xi)

R0(Xi)
), (5.9)

and the FC makes the decision that a change has occurred when this statistic exceeds

FC detection threshold hf . This procedure is shown in Algorithm 7.
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Algorithm 7 Minimax FC and Local Sensor Algorithm

1: while zk < hf :
2: for i = 1 to M :
3: gik=gik+ln(

f1(Xk)
f0(Xk)

4: if gik ≥ hl:
5: rk = rk + 1
6: if gik < 0:

7: gik = 0
8: end for
9: zk = zk + ln(

R1(rk)
R0(rk)

10: k = k + 1
11: end while

FC Threshold Design Procedure (Offline)

Using the CUSUM procedure at the FC avoids the need for constants ρ and cd to be

specified. We still, however, need to compute an appropriate global threshold, hf , for

the FC. It is desirable to set this threshold such that our system meets the FC false

alarm rate constraint with equality to minimize FC detection delay.

Using the shift in pmf analysis, developed for the SPRT in Section 3.3.4 and

extended to CUSUM in Section 3.4, we can compute the FC expected detection delay

and false alarm rate given our report arrival pmf under H1 and H0, and a value of hf .

For a distributed system with M sensors and local sensor thresholds set to hl, we can

iteratively compute the FC false alarm rate of the system under different potential

values of hf . This can be done until a (hl, hf ) pair is found that designs the system

to satisfy the false alarm rate constraint. We will describe in the following section

the full system design methodology by which we can determine (hl, hf ) pairs that

can achieve the desired false alarm rate given system parameters and estimate the

performance of each of these designs.
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5.5 System Design Procedure

Consider a distributed system with M sensors observing a shift in mean Gaussian

test. We wish to design this system such that RFC
FA ≤ αFC , while minimizing EFC

DD.

This problem can be formulated as

min
hl,hf

EFC
DD (5.10)

subject to RFC
FA ≤ αFC . (5.11)

We can convert αFC to a local sensor minimum false alarm rate constraint, αl, using

αFC
M

= αl. (5.12)

We then seek to design local sensors to achieve a local false alarm rate, defined as

Rl
FA, of

Rl
FA ≥ αl. (5.13)

When a value of hl is chosen for the distributed system of M sensors that results

in Rl
FA = αl, the FC should terminate and choose H1 after only one report in order

to satisfy RFC
FA = αFC . This value of hl is an upper bound on our potential hl values.

For hl that result in Rl
FA > αl, we will need to process more than one report before

choosing H1 at the FC in order to satisfy RFC
FA = αFC . If we select a value of hl that

causes local sensors to violate (5.13), then for any choice of hf we will always over

design our distributed system in terms of false alarm rate, resulting in greater delay.

We therefore propose that, given the value of αl from (5.12), we compute the
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maximum possible value of hl that satisfies (5.13) using our CUSUM analysis of

Section 3.4 within a search procedure. Once this value of hl is determined, we can

compute its associated reporting pmfs using Algorithm 4 and determine the hf that

designs the system to achieve the closest RFC
FA to αFC as possible by treating it as a

shift in pmf test, as described in the offline FC threshold design procedure of Section

5.4. We then compute and store the EFC
DD and RFC

FA of this (hl, hf ) pair, decrement hl

and repeat this process, storing the EFC
DD and RFC

FA values for each (hl, hf ) pair.

We can choose a final (hl, hf ) pair to design local sensors and the FC based on

system requirements. For example, if our only design goal is to minimize expected de-

tection delay while meeting a maximum false alarm rate, we can choose the threshold

pair with minimum EFC
DD. If, for example, power consumption is a secondary concern

within our network, it may be desirable to reduce the number of report transmissions

between local sensors and the FC. In this case, we can choose the largest possible hl

among these threshold pairs so that our reports are most informative, and thus less

reports are needed for a decision.

We summarize the implementation of this design procedure below:

1. Identify system design and environment variables M , L, and αFC .

2. Using Equation (5.12), convert αFC to a lower bound on the local sensor false

alarm rate constraint, αl.

3. Iteratively compute Rl
FA for different local sensor thresholds, hl, using Algo-

rithm 2 and Equation (3.55). Stop the search procedure when Rl
FA is suffi-

ciently close to αl. This is the maximum value of hl that should be used in the

distributed system.
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4. Using this value of hl, perform Algorithm 4 to determine the reporting pmf at

the FC, R1(Xk) and R0(Xk).

5. The arrival of reports at the FC can now be treated as a discrete shift in

pmf problem. Iteratively compute RFC
FA for different values of hf using R1(Xk)

and R0(Xk) as the observation distribution to Algorithm 2 and using Equation

(3.55). Stop the search procedure when hf is sufficiently close to αFC .

6. Record (EFC
DD, R

FC
FA) for this threshold pair (hl, hf ).

7. Decrement hl and repeat procedure from 4.

5.6 Results

Scalability of System Design

The system design proposed in this chapter, and the accompanying methodology of

computing appropriate thresholds, are both better equipped to scale to large sensor

networks than existing approaches in literature. The reasons for this are twofold.

First, by using the CUSUM analysis procedures of Chapter 3, we are able to

account for sequential test overshoot in the design of local sensors. This allows us to

accurately design each local sensor to achieve the desired error metric. This contrasts

existing approaches that often neglect sequential test overshoot in the design of local

sensor thresholds, which results in more conservative thresholds than needed to meet

design specifications. The accumulated impact of over designing many local sensors

in large systems will be significant on system wide performance.

Second, the value of M does not result in a significant increase of computational

complexity in the design procedure of Section 5.5. The value of M is only used in
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the design procedure in Equations (5.12) and (3.61). Of these, increasing M only

increases the complexity of computing Equation (3.61), which can be approximated

for large M using well known methods such as Stirling’s formula.

Accuracy of Proposed Design Approach

We investigate the accuracy of our proposed design procedure by considering a N(0, 1)

vs N(0.5, 1) test under different parameters hl, M , and L.

Each combination of M , L and hl resulted in unique report arrival pmfs, that

were computed using Algorithm 4 at the local sensor. Algorithm 3 was then used

with these pmfs to compute EFC
DD and RFC

FA for each potential hf . Monte Carlo trials

simulating the entire distributed system were performed to evaluate the accuracy of

our proposed procedure in predicting EFC
DD and RFC

FA given these parameters. This

comparison is shown in Figures 5.2, 5.3 and 5.4.

Close agreement is seen between our proposed procedure and Monte Carlo. We

remark that the source of error between approaches is likely a result of slight time

dependence in the report arrival process in Monte Carlo trials. This dependence was

originally highlighted in Section 3.5.2. When a report is received at the FC, it is

less likely to receive another report in the immediately following time slots because

one or more local sensors have been reinitialized to zero as part of their reporting

procedure. It is unlikely that these sensors transmit another report in next few time

slots and their reporting probability is time varying for a short time until they reach

the assumed steady state pmfs. This time interval is not accounted for in our proposed

procedure.

In Section 3.5.2, it was shown that this time dependence has the most effect on
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estimating the probability of receiving multiple simultaneous reports. Based on this

discussion, we reason that as M gets large and L remains fixed, the time dependence

of the reporting sequence will decrease. In such cases, the test termination and

reinitialization of a small subset of local sensors will have minor impact on the system-

wide reporting probabilities. Given this, and that we are operating away from the

change time, we can assume that the reporting sequence will be approximately IID.

When these conditions hold, the accuracy of our design procedure in estimating EFC
DD

and RFC
FA for threshold pairs (hl, hf ) will increase, and our system design will be

asymptotically optimal for fixed L as M →∞ in Lorden’s sense.

The time dependence in the arrival of reports also becomes vanishingly small in

cases where the difference between hypotheses as observed by local sensors before and

after the change gets large. In such conditions, local sensors reach their steady state

reporting probabilities more quickly, reducing the transient period between the two

reporting pdfs, which impacts the accuracy of computed reporting probabilities.

We also note the staircase phenomenon prominent in each figure. This effect

occurs because the report arrival pmfs are discrete distributions with L+ 1 non-zero

terms. A similar effect was seen and discussed when analyzing discrete distributions

in Section 3.4. When L is small, the discretization of the observation distributions

causes discontinuities in the achievable false alarm rates the FC can be designed for

under different values of hf . In these cases, it is necessary to use randomization at

the FC detector to achieve all possible false alarm rates.

The largest discontinuity in these scenarios occurs at small hf . This discontinuity

is due to the performance difference between designing the FC to always terminate

after one report and to always terminate after more than one report. We remark that
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this test design is therefore not a Neyman-Pearson test because some αFC are not

achievable without randomization. As L increases and the probability distribution

of the number of simultaneously received reports is more uniformly distributed over

n, 0 ≤ n ≤ L, this staircase effect decreases because the discrete report pmfs more

closely approximate continuous distributions.
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Figure 5.2: Expected detection delay and false alarm rate as a function of FC thresh-
old hf for a N(0, 1) vs N(0.5, 1) test with M = 15, hl = ln(125), L = 1.
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Figure 5.3: Expected detection delay and false alarm rate as a function of FC thresh-
old hf for a N(0, 1) vs N(0.5, 1) with M = 7, hl = ln(60), L = 3.
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Figure 5.4: Expected detection delay and false alarm rate as a function of FC thresh-
old hf for a N(0, 1) vs N(0.5, 1) with M = 15, hl = ln(60), L = 3.

System Performance

The performance of our proposed distributed system in terms of the expected detec-

tion delay when achieving a given false alarm rate is investigated in Figure 5.5. A

N(0, 1) vs N(0.5, 1) test is considered with M = 13 and varying L. The difference in

system performance between L = 1 and L = 2 is significant. Two reports are often

received simultaneously at the FC in this scenario, therefore it is beneficial to be able

to distinguish between one and two reports being received. The difference in using

L = 2 and L = 3 is marginal because of the rarity of receiving three reports simulta-

neously for this scenario. We can therefore use this analysis to conclude that for this

scenario a bandwidth constraint of L = 2 is sufficient. The performance improvement

from L = 2 to L = 3 does not merit the increase in resources needed to maintain the

higher bandwidth limit.

We also note that the improvement between L = 2 and L = 3 is more significant

as RFC
FA decreases. A lower false alarm rate results in, on average, more reports being
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needed prior to the FC choosing H1. This therefore makes it more likely to receive

three reports within a test.
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Figure 5.5: Performance of the decentralized CUSUM system observing a N(0, 1) vs
N(0.5, 1) test with hl = ln(15) and M = 13 under varying bandwidth
constraint L.

Figure 5.6 shows the same scenario described above but with fixed L = 3. The

number of sensors is then varied and system performance is compared. As expected,

increasing the number of sensors improves system redundancy, allowing for smaller

EFC
DD to be achieved for a given false alarm rate. We remark that greater performance

improvement is seen by increasing M in this system than in that of Chapter 4. The

computational complexity of the design procedure also does not change significantly

with M . This system and its design methodology therefore scale more readily to large

sensor networks.



5.7. CONCLUSION 98

3.02.82.62.42.22.01.8
log10(RFC

FA)

5.0

7.5

10.0

12.5

15.0

17.5

20.0

EFC D
D

M=13
M=10
M=7
M=4

Figure 5.6: Performance of the decentralized CUSUM system observing a N(0, 1) vs
N(0.5, 1) test with hl = ln(15) with varying number of sensors, M

5.7 Conclusion

Motivated by the limitations of the Bayesian formulated system design of Chapter

4, a minimax formulation to the distributed quickest change detection problem was

investigated in this chapter. A number of distributed system designs using this for-

mulation have been explored in literature, but with the emergence of IoT, there is

significant demand for designs that are scalable to large wireless sensor networks.

Existing designs are often not capable, or suffer significant performance degradation,

when scaling to large networks because of issues such as power consumption, limits

on the available wireless spectrum and neglecting sequential test overshoot. Exist-

ing designs also do not consider methodologies for designing sensor thresholds within
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these systems to meet acceptable error rates.

To address these limitations in existing works, we propose a decentralized, dis-

tributed system design that considers bandwidth restrictions on the number of si-

multaneous summary reports that can be received by the FC from local sensors in

any time slot. The proposed design uses the CUSUM procedure at local sensors and

at the FC. The numerical procedures of Chapter 3 are used to analyze local sensor

operation and compute pmfs describing the arrival of summary reports at the FC.

This information is used in the online procedure of the FC, and in the design of local

sensor and FC thresholds. Through this, we are able to propose a methodology for

designing the thresholds of local sensors and the FC according to a desired limit on

the false alarm rate of our system.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, the distributed quickest change detection problem was investigated.

Although this problem has been well explored in existing literature, the vast scale of

future IoT networks has highlighted limitations of existing approaches in their appli-

cation to large sensor networks. These limitations are rooted in simplification and

resource management issues such as ignoring local sensor sequential test overshoot,

high power consumption and reliance on an abundance of unused wireless spectrum.

Existing works also do not consider practical issues with the real-world implemen-

tation of these systems. For example, guidelines are needed that govern the design

of sensor thresholds in these systems to meet error specifications, and methods of

numerically analyzing the performance of a system design prior to implementation

hold significant promise in making planning and decision making for system designers

easier. This thesis explored these limitations in the context of different formulations

of solutions to addressing the distributed quickest change detection problem.

In Chapter 3, an algorithm was introduced that allows for sequential test overshoot
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to be taken into account in the design of SPRT and CUSUM thresholds. These

procedures provide an improvement in the accuracy of test designs with respect to

desired error specifications in comparison to using Wald’s approximations. To put

this in perspective, in the Gaussian shift in mean example considered in Section 3.3.1,

using Wald’s approximations to design a SPRT was shown to provide thresholds that

resulted in tests that were up to twice as conservative as desired. This in turn

approximately doubled the expected test delay at high error probabilities.

It was shown that these procedures had significant potential for application to

distributed quickest change detection. First and foremost, designing local sensors to

account for sequential test overshoot removes a major obstacle in the scalability of

any distributed system design. In large networks, it was expected that the accumu-

lated performance loss resulting from neglecting local sensor overshoot was significant.

These procedures, however, also provided insight into the operation of local sensors

using any reinitialization strategy within distributed systems. This allowed us to ac-

curately estimate the arrival of summary reports at the FC from local sensors that

utilize the CUSUM procedure in distributed systems of different sizes.

Two system designs addressing the distributed quickest detection problem based

on Bayesian and minimax formulations were then proposed that take advantage of this

algorithm. Insight into the operation of local sensors allowed multiple simultaneous

transmissions within the network to be permitted and analyzed uniquely by the FC.

The potential restriction of limited bandwidth at the FC was also incorporated and

addressed in both proposed solutions.

In Chapter 4, the Bayesian system design was discussed. A decentralized system

was proposed that uses the CUSUM procedure at local sensors. The local sensor
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CUSUMs were analyzed using the algorithms of Chapter 3 to determine the prob-

ability of receiving one or more report in each time slot at the FC. The arrival of

reports at the FC was treated as an optimal stopping problem, an approach that

has been extensively studied in literature in single sensor systems. Analysis of the

performance of this system highlighted implementation challenges and limitations on

the scalability of systems using a Bayesian formulation. It was found that incorrect

specification of ρ could lead to a change in the false alarm rate of the distributed

system in tested scenarios by a factor of five, and that the complexity involved in

computing a suitable threshold for the FC increased exponentially as a function of

(M + 1), where M is the number of local sensors in the system. An operating range

was also found to exist in the false alarm rate that could be achieved by the FC for

any choice of hl and ρ, further complicating any threshold design procedure. This

system was therefore considered to not be capable of addressing research objectives

and have limited potential within large sensor networks.

Such limitations motivated the minimax formulated system design in Chapter 5.

This design similarly used the CUSUM procedure at local sensors to quantize local

sensor observations into binary reports that were transmitted to the FC. Probability

mass functions describing the probability of the FC receiving one or more reports

from local sensors in each time slot were computed, and were used by the fusion

center to implement a globally run CUSUM. This design was shown to not have

limitations in its scalability to large networks and a methodology by which global

and local thresholds could be chosen to meet a desired false alarm rate constraint

was proposed. It was also shown that the performance of a system design could be

numerically computed for different choices of system design variables. The application
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of such a performance analysis was showcased in Figure 5.5, where it was concluded

that increasing the system bandwidth constraint from L = 2 to L = 3 only resulted in

a less than 5% improvement in performance at RFC
FA = 0.001. This kind of insight can

assist system designers in making important decisions pertaining to the allocation of

resources in potential deployments of the proposed system.

6.2 Future Work

• In our current formulation to the distributed quickest change detection problem,

it is assumed that local sensors are reliable indefinitely. All summary reports

are considered to be equally trustworthy by the FC in determining whether a

change has occurred. In practice however, sensors have finite life expectancies.

They may eventually break down, causing erroneous reports, or a lack thereof,

to be delivered to the FC. It is therefore important to investigate procedures

that the FC can implement to guarantee some performance against the po-

tential of faulty sensors. Solutions to this problem could also find application

within security critical contexts where one or more sensors may be malicious.

The background behind this problem was considered in [18], and extensions of

this problem to distributed hypothesis testing and change detection are seen

in [15],[33],[10]. These problems consider the concern that one or more sensors

may fall under the control of an adversary that tries to ruin the integrity of

the system. The distributed system design must therefore be robust against

incorrect data transmitted by a subset of local sensors.

• Binary quantization of local sensor observations into summary reports is used
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by local sensors in each distributed design in this thesis. This kind of quan-

tization strategy is well motivated in that it is the strategy that requires the

least amount of power for local sensors to transmit reports to the FC. However,

it also introduces some performance loss within our proposed systems, which

can be seen by comparing to the performance of a centralized CUSUM. We

therefore propose investigating the scenario where local sensors transmit to the

FC their unquantized log-likelihood ratio statistic at test termination. This

transmission strategy should allow for the design of a system that more closely

approximates that of the centralized CUSUM in terms of performance. Such

a design however requires knowledge of the pdf of local sensor test overshoot

under H1 and H0 to implement similar CUSUM and Bayesian procedures at

the FC as was considered in this thesis. These overshoot pdfs are in general

difficult to estimate.

• The algorithms proposed and discussed in Chapter 3 can also be applied to

analyzing the distributed hypothesis testing problem. Similar system designs

that were considered in this thesis could be applied to this problem.
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