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Abstract

Efficient resource allocation at the physical layer of wireless communication systems

is closely linked to performance. Time and space are examples of such resources.

In a densely-deployed multi-antenna, multi-user wireless downlink, finding a low-

interference group of spatially distributed users in conjunction with spatial-domain

multiple access beamforming represent techniques for efficient use of spatial resources.

However, in practice, finding a perfectly orthogonal interference-free group of users to

receive concurrent service is unlikely, thus wasting the transmission period or tempo-

ral resource. In this work, we set out to analyze the allocation of competing spatial

and temporal resources in the context of the wireless downlink. The intention of

this analysis is to investigate the orthogonality criteria that underpin many practi-

cal user selection algorithms. Deeper understanding of such criteria has potential

for designing improved interference-mitigating algorithms in this sense, and in other

related scenarios. A relaxed definition of orthogonality between users in group is

investigated for practical amplitude and quadrature modulation schemes. Motivated

by widely-linear processing techniques, new relaxed user orthogonality on the com-

plex hyper-sphere illustrates temporal benefits and trade-offs associated with various

system parameters. Beamforming and user selection are analyzed jointly for key sce-

narios of interest to gain insights into the interaction between these spatial resource
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management techniques. System throughput and reliability performance analysis is

also developed, and applied to these scenarios to gain further insights.

ii



Acknowledgments

First and foremost, I would like to acknowledge and thank Dr. Steven Blostein for his

support throughout the course of this work. Without the experienced recommenda-

tions, patient mentorship, and generous financial support provided by Dr. Blostein,

this work would not have been possible. I would also like to thank Queen’s University

and the Government of Ontario for supporting this work financially.

I would also like to thank my peers in the Information Processing and Communi-

cations Laboratory at Queen’s, especially Matthew Quarisa, Sayed Saeed Rezazadeh,

Philip Oni, Monica Rao, Mohamed Hedayati, and Tianda Li for taking time from

their busy schedules to discuss and share ideas regarding this work.

The comments and feedback provided by the faculty members in Queen’s Electrical

and Computer Engineering Department are greatly appreciated. I would like to thank

these faculty members for taking the time to review this work. I would also like to

acknowledge their comments and suggestions contributing to this work.

Finally, I would like to thank my family and friends for their support over the

course of this work. I would especially like to thank my parents, my Aunt Lynn and

Uncle Denis, John McCrae, Ian Goode, and Ian Maquinez.

All of these sources of support has resulted in a valuable educational experience

for which I am exceptionally grateful.

iii



Contents

Abstract i

Acknowledgments iii

Contents iv

List of Figures vi

List of Acronyms and Abbreviations ix

Chapter 1: Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions and structure . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2: Background 6
2.1 Beta functions and the Beta Distribution . . . . . . . . . . . . . . . . 6
2.2 Linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Matrix operations and decomposition . . . . . . . . . . . . . . 10

2.3 Improper random variables and widely-linear processing . . . . . . . . 11
2.4 Related work on transmit beamforming and user selection . . . . . . 13
2.5 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Chapter 3: System Model 18
3.1 Quadrature-Valued System Model . . . . . . . . . . . . . . . . . . . . 25
3.2 Real-Valued System Model . . . . . . . . . . . . . . . . . . . . . . . . 26

Chapter 4: Analysis of REO and QEO Group Existence Probability 28
4.1 Random sphere packing formulation . . . . . . . . . . . . . . . . . . 32

iv



4.2 Fractional cap cover . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.1 Geometric expressions for real 2-sphere and real 3-sphere . . . 34
4.2.2 Geometric approach on the real hyper-sphere . . . . . . . . . . 36
4.2.3 New Statistical approach on the complex hyper-sphere . . . . 37
4.2.4 Method based on Monte-Carlo integration . . . . . . . . . . . 41
4.2.5 Numerical and simulated results . . . . . . . . . . . . . . . . . 42

4.3 Dependent groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.1 Numerical and simulated results . . . . . . . . . . . . . . . . . 51

4.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Chapter 5: SDMA Beamforming 55
5.1 MRTBF and WL-MRTBF . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 RZFBF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3 WL-RZFBF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.4 Joint analysis of beamforming and user orthogonality for maximum

interference power case . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4.1 RZFBF analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4.2 MRTBF analysis . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.4.3 WL-RZFBF analysis . . . . . . . . . . . . . . . . . . . . . . . 65
5.4.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 67

Chapter 6: System Performance Analysis 70
6.1 Symbol Error Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.1.1 SER for maximum interference power case . . . . . . . . . . . 71
6.1.2 Numerical results for maximum interference power case . . . . 73

6.2 Outage rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2.1 Numerical results for maximum interference power case . . . . 79

6.3 Mean Sum Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.1 Numerical results for maximum interference power case . . . . 81

Chapter 7: Conclusions and Future Work 86
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Bibliography 89

v



List of Figures

3.1 Block diagram of the downlink system model. . . . . . . . . . . . . . 19

3.2 QPSK constellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 16-QAM constellation . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 BPSK constellation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 4-PAM constellation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Definition of spherical cap Cir on the surface SN . . . . . . . . . . . . 31

4.2 2ΩN (θq)

ΩN (π)
and 2ΩN (θr)

ΩN (π)
given in Theorems 1 and 2 respectively, versus

ε-orthogonality (continuous curves). 40,000-trial Monte-Carlo simula-

tion computed according to Eq. 4.40 (discrete points). . . . . . . . . 43

4.3 Analytic RVS p⊥ plotted (continuous curves) as a function of εr. 10,000-

trial Monte-Carlo simulation computed according to Eq. (4.40) (dis-

crete points). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Pr[Sε 6= ∅] for L = 4, K = 30 plotted as a function of ε. Continu-

ous analytic curves are a lower-bound on group existence probability

given by Eq. (4.54). 80,000-trial Monte-Carlo simulation computed

according to Eq. (4.40) (discrete points). . . . . . . . . . . . . . . . . 52

5.1 Analytic RZFBF of signal (left) and interference (right) gains from

Proposition 1 as a function of εq, L = 4, N = 16, PRZF = L.. . . . . 68

vi



6.1 RVS SER given by Eq. 6.1 plotted against SIR measure in terms of εr

for various numbers of antennas WL-MRTBF (left) and WL-RZFBF

(right). BPSK, SNR = 10dB, L = 8, and τ = σ2 are assumed. . . . . 74

6.2 QVS SER given by Eq. 6.1 (left plot) plotted against SIR measure in

terms of εq. MRTBF, SNR = 10dB, and N = 4 are assumed. RVS SER

given by Eq. 6.1 (right plot) plotted against SIR measure in terms of

εr. WL-MRTBF, SNR = 10dB, and N = 4 are assumed. . . . . . . . 76

6.3 QVS SER given by Eq. 6.1 (left) plotted against SIR measure in terms

of εq. RZFBF, SNR = 10dB, and N = 4 are assumed. RVS SER

given by Eq. 6.1 (right) plotted against SIR measure in terms of εr.

WL-RZFBF, SNR = 10dB, N = 4, and τ = σ2 are assumed. . . . . . 77

6.4 RVS and QVS single-user outage rate (bits per channel use) given

by Eq. (6.8) plotted as a function of user orthogonality constraint ε.

RZFBF assumed for QVS, WL-RZFBF assumed for RVS, N = 16,

SNR= 10dB, and τ = σ2. . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.5 QVS mean sum rate (bits per channel use) given by Eq. (6.9) (right

plot) plotted as a function of εq for MRTBF. N = 16, K = 30,

SNR=10dB. RVS mean sum rate (bits per channel use) given by Eq.

(6.9) (left plot) plotted as a function of εr for WL-MRTBF. N = 16,

K = 30, SNR=10dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

vii



6.6 QVS mean sum rate (bits per channel use) given by Eq. (6.9) (left plot)

plotted as a function of εq for RZFBF, N = 16, K = 30, SNR=10dB.

RVS mean sum rate (bits per channel use) given by Eq. (6.9) (right

plot) plotted as a function of εq for WL-RZFBF, N = 16, K = 30,

SNR=10dB, and τ = σ2 . . . . . . . . . . . . . . . . . . . . . . . . . 85

viii



List of Acronyms and Abbreviations

• Multiple-input multiple-output (MIMO)

• Multi-user multiple-input multiple-output (MU-MIMO)

• Massive multi-user multiple-input multiple-output (MMU-MIMO)

• Symbol error rate (SER)

• Signal-to-noise ratio (SNR)

• Signal-to-interference ratio (SIR)

• Signal-to-interference plus noise ratio (SINR)

• Quadrature-epsilon-orthogonal (QEO)

• Real-epsilon-orthogonal (REO)

• Quadrature-valued system (QVS)

• Real-valued system (RVS)

• Widely-linear (WL)

• Beamforming (BF)

• Spatial-division multiple access (SDMA)

• Maximum-ratio transmission (MRT)

• Regularized zero-forcing (RZF)

• Quadrature phase-shift keying (QPSK)

• Binary phase-shift keying (BPSK)

• Quadrature amplitude modulation (QAM)

• Pulse amplitude modulation (PAM)

ix



1

Chapter 1

Introduction

1.1 Motivation

Demand for wireless connectivity is growing with no expectation of slowing down[1].

Increasing demand for wireless connectivity is driven by several existing and emerg-

ing applications including the internet of things (IoT), vehicular networks, wireless

sensor networks, automation, e-health and body-area networks, and high-throughput

video applications such as streaming high-definition video and augmented reality [2].

This diverse variety of applications not only increases overall wireless demand, it also

translates to a wide range of distinct quality of service (QoS) requirements in terms

of power efficiency, spectral efficiency, throughput, and latency in the wireless down-

link. For example, real-time applications such as autonomous vehicles require low

latency communication between nodes in the network. In the case of autonomous

vehicles, communication latency is an important safety factor. Sufficiently high net-

work latency will result in out-of-date information at one or more vehicles in the

network, increasing the risk of a collision. Conversely, consider streaming HD video

to a wireless device. Assuming a sufficiently large buffer at the receiver, latency is
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less important than high-throughput QoS.

The proliferation of interconnected wireless devices is expected to have a signif-

icant impact on the density of future wireless networks. As the number of wireless

users demanding a broad range of services increases, the environment of future wire-

less networks is expected to be a dense deployment of co-existing networks, each

designed to meet the QoS requirement of the users it is serving [3, 4, 5, 6]. Per-

formance of such co-existing networks is expected to be interference-limited. Thus,

low-level interference mitigation at the physical layer is a key challenge to overcome.

1.2 Problem description

Much work has been dedicated to physical layer interference mitigation in the wireless

downlink. Such work is typically focused on taking advantage of orthogonal domains

such as time (scheduling), frequency (spectral re-use), power (non-orthogonal multiple

access), and space. Spatial-domain interference mitigation techniques are an active

topic of investigation. One such technique is the utilization of massive multi-user

multiple-input multiple-output (MMU-MIMO) and spatial-division multiple access

(SDMA) to achieve a spatial multiplexing gain in the system[7, 8]. Another tech-

nique is to select users for the group based on spatial-domain orthogonality criteria.

Analysis of spatial user orthogonality criteria and SDMA beamforming constitute the

primary focus of this work.

Rather than developing user selection algorithms as in [9, 10, 11], the focus of this

work is to investigate the spatial orthogonality criteria between a typical group of

users, which is the basis for many interference-mitigating user selection algorithms.

This analysis is then put in context by characterizing the interaction between spatial
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user orthogonality criteria, MU-MIMO SDMA transmit beamforming, and modula-

tion in terms of system performance on an average basis for the specific scenarios

of interest. The object of this integrated approach is to gain insight into the in-

teractions between the various facets of the larger system in terms of performance

assuming a dense deployment of wireless users requesting high-throughput service

and MU-MIMO. We set out to develop an analysis that scales well with the number

of antennas in a system. Such an approach allows for application of the work to

MMU-MIMO scenarios in the future. Spatial user orthogonality is approached as an

allocation problem between competing spatial and temporal resources. The objective

of a user selection algorithm is to find a group of users whose random channels are suf-

ficiently orthogonal to mitigate interference without being so strict that we are unable

to find a group of users and waste the transmission period. To analyze this prob-

lem inherent to specific user selection algorithms, a relaxed ε-orthogonal definition

of spatial user orthogonality is adopted, similar to [12], with several improvements,

extensions, and further contributions.

1.3 Contributions and structure

1.3.1 Contributions

The contributions of this work are as follows:

1. System performance is analyzed using an integrated approach, investigating the

interaction between modulation, beamforming, and user orthogonality. Perfor-

mance analysis features symbol error rate (SER), single user capacity, and mean

group sum rate characterization. A variety of practical discrete-alphabet real
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and quadrature modulation schemes are considered. The analysis also charac-

terizes several linear beamforming schemes and two definitions of spatial user

orthogonality criteria.

2. For the first time, an exact expression for widely-linear fractional cap cover on

the N -dimensional complex hypersphere is developed by extending works [13,

14, 15] and applying widely-linear processing techniques [16, 17, 18]. Numerical

computation of this expression scales well with the number of antennas in the

system, which is attractive in the context of the MMU-MIMO system. This new

result is applied to user orthogonality analysis to illustrate performance benefits

associated with judiciously designing user orthogonality criteria in conjunction

with modulation and beamforming schemes utilized in the system.

3. The union bound in [12] is substituted for a criterion that loosens strict orthog-

onality to a mean-based metric. By making use of this mean-based approach,

we avoid several problems associated with orthogonality definition in terms of

non-overlapping randomly placed spherical caps. The location of caps on the

sphere are randomly placed when forming a group of users based on relaxed

orthogonality criteria. This is not the case in the well-known sphere packing

problem in the context of channel coding [19] or more recently in [20]. The lo-

cation of codewords is chosen, thus allowing for a non-overlapping packing to be

found without gaps between codewords in the spherical space. We do not have

such control when forming relaxed orthogonality groups of users, thus finding a

strictly non-overlapping packing is a difficult task. Instead, a certain degree of

overlap between caps is allowed on an average basis, making the problem much

more tractable. This approach also avoids the issue of neglecting intersections
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of more than two caps for groups of more than two users.

1.3.2 Structure

The remainder of the work is organized into six chapters. First, background informa-

tion and related work are reviewed. Next, system models and preliminary assumptions

are presented. The system structure, channel model, user selection, and modulation

schemes are formulated in the context of these models. User orthogonality is then

formulated as a random packing problem assuming hyper-spherical model and ana-

lyzed. Following relaxed user orthogonality analysis, several beamforming models are

developed and analyzed. Beamforming and user orthogonality analyses are then used

to characterize overall system performance. Lastly, conclusions and future work are

discussed.
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Chapter 2

Background

The first several sections of this chapter are concerned with the provision and expla-

nation of reference material used throughout the work. These sections provide a more

detailed supporting explanation of methods and concepts applied in later chapters.

The final section of this chapter conducts a brief survey of existing work in the field

that is related to this work.

2.1 Beta functions and the Beta Distribution

The Beta Distribution and various Beta functions are useful in a variety of applica-

tions, including stochastic quadratic forms. It is important to differentiate between

the Beta Distribution, the Beta Function, the Incomplete Beta Function, and the

Incomplete Regularized Beta Function. The Beta Distribution is a continuous prob-

ability distribution that is defined on the interval [0, 1] [15]. The probability density

function (PDF) and cumulative distribution function (CDF) of the Beta Distribution

are given in terms of the various Beta functions.

For a random variable, X that is Beta- distributed with shape parameters a and

b, we adopt the notation X ∼ β(a, b). Let x ∈ X be the realizations of X and denote



2.1. BETA FUNCTIONS AND THE BETA DISTRIBUTION 7

fX(x) as the PDF of X. We also define FX(x) as the CDF of X.

The PDF and CDF of X ∼ β(a, b) is described in terms of the Beta Function,

and Incomplete Regularized Beta Function. We define B(a, b) as the Beta Function,

Bx(a, b) as the Incomplete Beta Function, Ix(a, b) as the Incomplete Regularized Beta

Function, and Γ(z) as the Gamma Function. B(a, b) can be described in several ways.

For example, B(a, b) can be described in terms of the Gamma function as

B(a, b) ≡ Γ(a)Γ(b)

Γ(a+ b)
, (2.1)

where

Γ(z) ≡
∫ ∞

0

yz−1e−ydy ∀ Re{z} > 0. (2.2)

Alternatively, the Beta Function can be represented in the trigonometric form

B(a, b) = 2

∫ π
2

0

sin2b−1(φ) cos2a−1(φ) dφ

∀ a > 0, b > 0 .

(2.3)

The trigonometric form of B(a, b) leads to the Incomplete Beta Function

Bx(a, b) = 2

∫ x

0

sin2b−1(φ) cos2a−1(φ) dφ

∀ a > 0, b > 0,

(2.4)

where Bπ
2
(a, b) = B(a, b). The Incomplete Regularized Beta function is

Ix(a, b) ≡ Bx(a, b)

Bπ
2
(a, b)

. (2.5)
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Given X ∼ β(a, b) the PDF and CDF of X are

fX(x) ≡ xa−1(1− x)b−1

B(a, b)
, (2.6)

FX(x) = Ix(a, b), (2.7)

respectively [15]. The mean and variance of X ∼ β(a, b) are

E{X} =
a

a+ b
, (2.8)

and

E{X2} =
ab

(a+ b)2(a+ b+ 1)
, (2.9)

respectively [15], where E{·} is the statistical expectation.

When a 6= b, the Beta Distribution is said to be skewed. When X ∼ β(a, b) and

a < b, the distribution is said to have a positive skew. Most of the mass in the PDF

is skewed towards zero, that is, E{X} < 0.5 and fX(x) is a monotonically decreasing

function of x that has a shape similar to a mirrored letter ‘J’.

The mirroring property [15] is an important property of the Beta Distribution in

the context of this work.

Definition 1. Mirroring Property of the Beta distribution

Given Beta-distributed random variable, X ∼ β(a, b), then

1−X ∼ β(b, a) (2.10)
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2.2 Linear algebra

2.2.1 Quadratic Forms

In the context of this work, the term “quadratic forms” refers to inner products and

norms of vectors. Given two vectors x and y, the inner product between x and y is

defined as < x, y >. Assuming x, y ∈ Cn, where Cn is the n-dimensional complex

Hilbert Space, their inner product is

< x, y >= xHy (2.11)

where, xH is the conjugate transpose (Hermitian) of x. In general, the product in

Eq. (2.11) is a complex scalar value. The magnitude of this product, which is a real

scalar quantity, is calculated

‖xHy‖ =
√

(xHy)(xHy)∗, (2.12)

where (xHy)∗ is the conjugate of (xHy).

The L-2 norm of x, which is a real scalar quantity, is given by

‖x‖ =
√
xHx. (2.13)

Asserting the Cauchy-Schwarz inequality, the normalized inner product is given by

‖xHy‖
‖x‖‖y‖

∈ [0, 1]. (2.14)
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2.2.2 Matrix operations and decomposition

Given the n× l matrix, X, we define the trace of the matrix as

Tr(X) ≡


∑n

i=1 Xi,i, if n > l∑l
i=1 Xi,i, otherwise

(2.15)

where (X)i,i denotes the ith diagonal element of the matrix X. The rank of X is given

by Ra(X).

We define X†and X‡ as the Moore-Penrose left pseudo-inverse and Moore-Penrose

right pseudo-inverse of X, respectively, given by

X† = (XHX)−1XH , (2.16)

and

X‡ = XH(XXH)−1. (2.17)

When l > n, we have X†X = I, and conversely when n > l we have XX‡ = I, where

I is the identity matrix. When l = n X is square and assuming X is invertible we

have X† = X‡ = X−1.

Assume that the l = n (i.e. X is square), Ra(X) = n (i.e. X is full rank), X is

hermitian and X is invertible. In this case, X will have n eigenvalues, corresponding

to n linearly-independent n×1 eigenvectors. We define λi as the ith scalar eigenvalue

of X belonging to the ith eigenvector defined as ei. The eigen decomposition of X is

given by

X =
n∑
i=1

λieie
H
i . (2.18)
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The inverse of X and also be written as

X−1 =
n∑
i=1

1

λi
eie

H
i . (2.19)

2.3 Improper random variables and widely-linear processing

Complex random variables can be classified as circularly-symmetric, proper, or im-

proper. A proper random variable is uncorrelated with its complex conjugate, and

its real and imaginary parts have the same finite variance (i.e., the complex ran-

dom variable has a constant diagonal covariance matrix). Conversely an improper

complex random variable has a covariance matrix that does not satisfy these criteria

[21]. Circular-symmetric complex variables are proper by definition; however, the

criteria for circularly symmetry is more strict. For a complex random variable to

be circularly-symmetric, its PDF must be rotation-invariant about the origin in the

complex plane.

In the context of communications, random variable properties are of particular

interest when processing complex signals. A common example is decoding symbols at

a receiver that are corrupted with random noise. In practice, symbols may be chosen

from a real or quadrature alphabet. The statistics used to process signals, depend on

whether a quadrature or real modulation scheme is chosen [22, 23]. Thus, processing

quadrature-modulated signals modelled as statistically proper is sufficient; however,

when processing amplitude-modulated signals, we must consider improper random

variables.

Whether or not a complex random variable is proper is important in the context

of linear minimum mean-square estimation (LMSE). Suppose we are given a scalar
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random estimand Y that is a linear combination of random observations X such that

Y = hHX. (2.20)

The object of the LMSE problem is to generate an estimate for Y , ŶL, that minimizes

E{(Y − ŶL)2} . We assume that the elements of X are complex random variables

with realizations x. Thus, the LMSE problem can be written as

ŶL = uHX, (2.21)

where we must find u such that E{(Y − ŶL)2} is minimized. By the orthogonality

principle, this solution will be achieved when E{(Y − ŶL)2} ⊥ X. Arriving at such a

solution is a well-known problem that can be solved by recursive regression on E{Y |X}

[24]. However, when the elements ofX are realized from an improper random variable,

the linear structure in Eq. (2.20) is no longer able to achieve a minimum mean-squared

error solution [17]. Since X has non-zero correlation with X∗, we must take advantage

of this correlation to arrive at the minimum-mean squared error solution. In order

to do so, we formulate a wide-sense linear (or widely-linear) minimum mean-squared

estimation problem (WLMSE). In WLMSE, we have

Y = hHX + gHX∗. (2.22)

Similar to Eq. (2.21), we write the WLMSE problem as

ŶWL = uHX + vHX∗, (2.23)
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where we must find u and v such that E{(Y − ŶWL)2} is minimized. The solution

to the WLMSE problem has been investigated at length in several works including

[17].The case where Y is real, assuming the elements of X are improper realizations

is of particular interest. In this case, u = v∗ [17], thus Eq. (2.23) becomes

ŶWL = 2Re{uHX}. (2.24)

In the context of digital wireless communications systems, the result in Eq. (2.24)

is particularly interesting for designing multiple-input multiple-output (MIMO) linear

pre-coding schemes for amplitude modulation. Given a complex realization of the

wireless channel, a complex pre-coding vector can be designed to estimate the real

amplitude modulated estimand in Eq. (2.24). The same principle can also be applied

to user selection schemes designed to mitigate interference. When demodulating the

amplitude-modulated signal, only the real part of interference impacts demodulation

performance. Therefore, when users transmitting amplitude-modulated signals are

selected in terms of complex channel realizations, widely linear techniques can be

applied to mitigate interference in a fashion better suited to the amplitude-modulated

signal.

2.4 Related work on transmit beamforming and user selection

Optimal transmit beamforming is a well-known problem, it is the subject of many

works including [25]. Several conventional linear transmit beamforming schemes in-

clude maximum-ratio transmit beamforming (MRTBF), zero-forcing beamforming

(ZFBF), and minimum mean-squared error beamforming (MMSEBF). Each of these
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schemes is optimal in a specific sense. Unsurprisingly, there are advantages and draw-

backs to each scheme. MRTBF is optimal in the signal-to-noise ratio (SNR) sense; it

neglects interference. Computational complexity of MRTBF is low relative to ZFBF

and MMSEBF. Conversely, ZFBF is optimal in the signal-to-interference ratio (SIR)

sense; it neglects noise. In addition to incurring higher computational complexity

relative to MRTBF, ZFBF also consumes an unbounded amount of transmit power

when users are spatially co-located. MMSEBF is optimal in the signal-to-interference

plus noise (SINR) sense, achieving minimum sum of mean-squared errors at the re-

ceiver. MMSEBF can be viewed as a weighted superposition of MRTBF and ZFBF.

Although MMSEBF is well-suited to adapting to noise-limited or interference-limited

environments, it requires an estimate of the noise power of the wireless channel. Es-

timating such a quantity accurately with low complexity is a challenging problem

[26].

In general, linear transmit beamforming schemes assume the estimand observes

proper statistics. This assumption holds for quadrature-modulated signals. However,

when an amplitude-modulated signal is assumed, the estimand will follow an improper

distribution [18]. In order to achieve MSE performance for an improper estimand,

widely linear processing techniques must be employed [17, 16, 27]. Widely linear pro-

cessing has been in the context of of amplitude-modulated transmit beamforming to

achieve spectral efficiency competitive with quadrature modulation schemes, partic-

ularly suitable for a large group of low-throughput low-latency users [28, 29, 30, 31].

Judiciously selecting spatially-distributed users has also been shown to improve

system performance in conjunction with beamforming [32, 12, 33]. In downlink user

selection, a group of users is chosen by the transmitter from the large number of
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densely populated candidates to receive concurrent service from the transmitter. By

filtering users in terms of interference in conjunction with beamforming, the transmit

beamformer is able to achieve better average spatial multiplexing gain under finite

power constraints [34, 35].

There is a significant collection of works discussing the user selection problem from

a variety of approaches. For example, a relaxed-orthogonality approach is taken in

[12, 32, 36, 37, 33]. In [12] zero-forcing beamforming throughput performance is shown

to approach that of dirty paper coding asymptotically. A similar asymptotic analysis

is performed in [32] and compared to a semi-orthogonal user selection (SUS) greedy

algorithm. More recent works [36, 37, 33] focus on throughput performance, making

use of spherical cap packing analyses. In [36], performance of selection algorithms is

studied under the assumption of imperfect channel state information (CSIT) and finite

signalling alphabet (QPSK, 16-QAM). Similarly, emphasis is placed on modelling

and computing SINR distributions under imperfect CSIT in [37]; however, sum rates

are computed on continuous signalling alphabets. In [33], asymptotic throughput

is considered (in the sense that an arbitrarily large number of candidate users are

available). Again, emphasis is placed on imperfect CSIT, and continuous Gaussian

signalling alphabets are implicitly assumed. Results in [33] suggest mean sum rate to

be a concave function of user selection orthogonality criteria, which agrees with the

hypothesis asserted in this work.

2.5 Notation

Inline description of variables and operations is given throughout the work. However,

consistent notation conventions are observed as much as possible throughout the work.
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A description of these conventions is provided here for further context.The following

naming conventions have been adopted throughout the work:

• Upper case letters X are used to denote random variables or scalar system

parameters, depending on context.

• Lower case letters x ∈ X are used to denote realizations of random variables.

• Underline notation x is used to denote vectors.

• Bold upper case boldface letters X is used to denote matrices.

• RN is used to denote the real N -dimensional space.

• CN is used to denote the complex N -dimensional space.

• ABC font is used to denote a set.

• ABC font is used to denote a surface and or point in a given space.

• A BC font is used to denote an ensemble of sets.

• ABC font is used to denote a transform in some sense.

A notable exception to the conventions are the channel variables hi, hj used exten-

sively throughout the following chapters. These variables are used to represent vectors

of random variables. Assuming the conventions above, these variables ought to user

upper case letters. The choice to use lower case letters is made to avoid confusion

with upper case matrix variables representing the channel.

The following function notation conventions have also been adopted:

• E{·} is used to denote the statistical expectation operation.
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• ‖ · ‖2 is used to denote the L-2 norm of a vector.

• Re{·} is used to denote the real part of a complex value.

• Im{·} is used to denote the imaginary part of a complex number.

• | · | is used to denote the magnitude of a complex number, the absolute value of

a real number, or the carnality of a set.

• Tr(·) is used to denote the trace of a matrix.

• Ra(·) is used to denote the rank of a matrix.
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Chapter 3

System Model

The system model assumed is illustrated in Fig. 3.1. The topology is chosen to

emulate a plausible scenario in a future terrestrial wireless downlink. A large number

of densely-deployed, low complexity single-antenna users require low latency, high

throughput service from a massive MIMO base station transmitter with N antennas.

A spatial-division multiple-access (SDMA) scheme is assumed at the physical layer

to provide concurrent service to a group of users, A, such that |A| = L, from a larger

set of candidate users, C, such that |C| = K ≥ L.

For a given transmission period, the ith user in A receives symbol si, which is a

realization of the random variable Si. Each user receives its own stream of symbols

independent of other users in A. Symbol transmit energy is assumed to be normalized

with energy Es = E{S2
i } = 1. Symbol realizations take discrete values from a finite

alphabet of size M with uniform probability. In the case of quadrature modulation

we have si ∈ SMq = {s(1,1), . . . s(
√
M ,
√
M)}, where SMq is the quadrature signalling al-

phabet and s(1,1) is the symbol at real and imaginary index 1. Similarly for amplitude

modulation we have si ∈ SMr = {s(1), . . . s(M)}, where SMr is the amplitude signalling
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Figure 3.1: Block diagram of the downlink system model.

alphabet and s(1) is the symbol at index 1. Gray coding is assumed. Four modu-

lation schemes are considered without loss of generality: binary phase shift keying

(BPSK), 4-symbol pulse amplitude modulation (4-PAM), quadrature phase shift key-

ing (QPSK) and 16-symbol quadrature amplitude modulation (16-QAM). The QPSK

and 16-QAM constellation diagrams are shown in Figs. 3.2 and 3.3, respectively.
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Figure 3.2: QPSK constellation

Figure 3.3: 16-QAM constellation

The constellation diagrams for the BPSK and 4-PAM schemes are shown in Fig

3.4 and Fig. 3.5, respectively.
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Figure 3.4: BPSK constellation.

Figure 3.5: 4-PAM constellation.

Since we have assumed a uniform probability of symbol transmission across the

alphabet, the decision boundaries of the Voronoi regions are equidistant between

neighbouring symbols. The distance between neighbouring symbols is given by 2dq

for quadrature modulation and 2dr for real modulation. For quadrature modulation,

we assume a unit-energy baseband signalling pulse g(t) is scaled by real and imaginary

amplitude components, Am1 and Am2 , such that

s(m1,m2) = (Am1 + jAm2)g(t) ∈ SMq

∀ m1 ,m2 = 1, 2 . . .
√
M .

(3.1)

We can re-write the above amplitude components as

Am1 = (2m1 − 1−
√
M)dq,

Am2 = (2m2 − 1−
√
M)dq.

(3.2)
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The average symbol energy is given by

Es =
1

M

√
M∑

m1=1

√
M∑

m2=1

A2
m1

+ A2
m2

=
d2
q

M

√
M∑

m1=1

√
M∑

m2=1

(2m1 − 1−
√
M)2 + (2m2 − 1−

√
M)2

(3.3)

which yields

dq =

√
3Es

2(M − 1)

=

√
3

2(M − 1)
.

(3.4)

For quadrature modulation, we assume a unit-energy baseband signalling pulse g(t)

is scaled by real amplitude components Am such that

s(m) = Amg(t) ∈ SMr . (3.5)

We can re-write the amplitude components as

Am = (2m− 1−M)dr

∀ m = 1, 2 . . .M .

(3.6)

The average symbol energy is given by

Es =
1

M

M∑
m=1

A2
m

=
d2
r

M

M∑
m=1

(2m− 1−
√
M)2,

(3.7)
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which yields

dr =

√
3Es

M2 − 1

=

√
3

M2 − 1
.

(3.8)

The separation between symbols in the constellations described by dr or dq has sig-

nificant impact on the reliability performance of symbol transmission. When the

separation between symbols in the constellation is low, the probability of incorrectly

decoding a transmitted symbol corrupted by interference and noise increases. Thus,

holding Es = 1, we expect higher-order constellations to have higher symbol error

rates (i.e. sacrificing power efficiency for spectral efficiency). Similarly, given Es = 1

and a given constellation order, we expect the symbol error rate of a real signalling

scheme to be higher than that of a quadrature signalling scheme assuming the same

number of symbols in both modulation schemes.

For practical systems implementing user selection algorithms, we assume a quasi-

static channel is periodically estimated, providing perfect CSIT. Motivated by this

model, we assume each element in the N × 1 wireless channel vector hi, i = 1, 2 . . . L

is an independent identically distributed random variable following complex circularly

symmetric normal distribution NC(0, 1) in order to develop an average-basis analysis.

Given that each element in hi is distributed according to circular-symmetric complex

normal distribution, hi is spherically-distributed as given by Theorem 1.5.1 [14]. The

focus of this work is to study spatial-domain orthogonality and interference on an

average basis, whereas others have considered power-domain orthogonality [38, 34].

We assume users have the same path loss, which is a worst-case assumption in the

power-domain sense. We assume estimated vectors hi are normalized to unity (i.e.

‖hi‖2 = 1). We do not expect groups containing dissimilar channel norms to perform



24

worse than those with similar ones in a spatial orthogonality sense. Therefore, we

analyze user selection and transmit beamforming using normalized channel estimate

vectors, neglecting the discrepancies between norms in the group. In addition to the

channel vector hi, we define H as the N × L channel matrix whose ith column is hi.

Additive white Gaussian noise (AWGN) is assumed. The AWGN terms Ni, 1 ≤ i ≤ L

in Fig. 3.1 are assumed to follow a complex circularly symmetric normal distribution

NC(0,σ2
n). Each of the L users’ symbols is linearly pre-coded by a 1×N beamforming

row vector, defined as wi. We also define W as the L × N beamforming whose ith

row is wi. Each of the L N × 1 vectors are summed together and transmitted over

hi, i = 1, 2 . . . L to the corresponding user. The received signal for the ith user is

given as a sum of signal, interference and noise terms

Ri = wihiSi +
L∑
j 6=i

wihjSj + Ni . (3.9)

Since users are densely-deployed, we expect the system to be interference limited.

Finding a group of users that are spatially orthogonal to some extent in conjunc-

tion with beamforming is expected to mitigate intra-group interference under finite

transmit power constraints and increase system throughput. However, on average, it

is highly unlikely that we will be able to find a group of perfectly orthogonal users

for a given channel estimation period. This wastes transmission opportunities since

the transmitter is unable to find a group suitable for interference-free transmission.

Conversely, if no spatial orthogonality criterion is imposed when the group is formed,

the transmitter will always be able to find a group; however, interference is likely to

hinder throughput. Therefore, we propose to investigate and analyze these competing

resources at the transmitter inherent to many practical user selection algorithms.
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3.1 Quadrature-Valued System Model

We propose analysis of user selection, beamforming and modulation at the transmit-

ter based on either quadrature or amplitude, i.e., we consider a quadrature-valued

system (QVS) or a real-valued system (RVS) model. The QVS model analyzes four

specific modulation schemes: binary phase shift keying (BPSK), 4-symbol pulse am-

plitude modulation (4-PAM), quadrature phase shift keying (QPSK) and 16-symbol

quadrature amplitude modulation (16-QAM). We propose a ε-orthogonal criterion

for forming and characterizing a group of users. The criterion is designed to mitigate

intra-group interference according to Definition 2.

Definition 2. Quadrature ε-orthogonal (QEO) groups of users:

Given a pool of candidate users C, their corresponding channel estimates hi, and a

perspective group of users to receive concurrent service from the transmitter A, let us

define the set of all QEO groups as

Sεq ≡ {A
∣∣ E{‖hHi hj‖2} ≤ εq},

∀ i 6= j ∈ A, ∀A ⊂ C,

(3.10)

where E{·} denotes the expectation taken over all possible realizations of the random

channel estimate.

The transmitter chooses the value of εq ∈ [0, 1] in Eq. (3.10) to control the

allocation of resources. A choice of εq = 1 places all allocation emphasis on temporal

resources. Since no constraints are imposed on channel orthogonality for εq = 1,

we are guaranteed to always find a group of users for a given transmission period.

Conversely, choosing εq = 0 places all emphasis on spatial resources. When εq = 0
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we only allow a group with perfectly orthogonal users to be formed. In practice, this

will be an extremely unlikely event, thus the probability of wasting the transmission

period is very high.

Two linear transmit beamforming schemes are characterized in the QVS model:

maximal-ratio transmit beamforming, and regularized zero-forcing beamforming. Beam-

forming analysis conditioned on the existence of a QEO group is discussed at length

in Chapter 5.

3.2 Real-Valued System Model

The RVS model considers two specific modulation schemes: binary phase shift keying

(BPSK), 4-symbol pulse amplitude modulation (4-PAM). We define an ε-orthogonal

criterion for forming groups of users analogous to Definition 2; where, the criterion

is modified to reflect the choice of a purely real modulation scheme, motivated by

widely-linear processing techniques.

Definition 3. RVS ε-orthogonal (REO) groups of users:

Given a pool of candidate users C, their corresponding channel estimates hi, and a

perspective group of users to receive concurrent service from the transmitter A, let us

define the set of all REO groups as

Sεr ≡ {A
∣∣ E{Re{hHi hj}2} ≤ εr},

∀ i 6= j ∈ A, ∀A ⊂ C.

(3.11)

We also define the term ε-orthogonal to describe a group of users, A, who satisfy

QEO or REO user selection criteria.

Two linear transmit beamforming schemes are considered in the RVS model:
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widely-linear maximum-ratio transmit beamforming and widely-linear regularized

zero-forcing beamforming. Beamforming analysis conditioned on the existence of

a REO group is discussed at length in Chapter 5.
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Chapter 4

Analysis of REO and QEO Group Existence

Probability

A statistical approach is taken towards analyzing the probability of finding REO and

QEO groups as defined in Definitions 2 and 3. In order to analyze the probability

that an ε-orthogonal group exists, several abstractions and methods are employed.

User orthogonality is abstracted onto a spherical (or hyper-spherical) surface. The

hyper-spherical surface of an arbitrary number of dimensions is defined in a real space

for some portions of the analysis, and in other portions a complex space. Statistical

analysis of orthogonality is then formulated as a random cap packing problem on

the spherical surface. Instead of bounding the random packing problem as in [12],

orthogonality on the surface is analyzed on an average basis. Thus, we can tractably

compute the probability of finding REO and QEO groups by calculating the mean

fraction of non-overlapping caps using [39]. The mean fraction of overlapping cap

result in [39] depends on the fraction of the hyper-spherical surface that the cap

covers. We extend methods for computing this fractional area from [13] and [14] for

use in the context of this analysis. The problem at hand requires us to find an L-sized
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ε-orthogonal group considering
(
K
L

)
possible choices made from a candidate pool of

size K. As noted in [12], these
(
K
L

)
groups will have users in common. Therefore,

statistical dependence among groups must be accounted for when calculating the

probability of finding an ε-orthogonal group. A graph-based dependency analysis is

employed using the results from [40]. The analysis culminates in the probability of

finding QEO and REO groups of size L chosen from a candidate pool of K users.

Much of the spherical analysis is common between the inner products in Defini-

tions 2 and 3. Therefore, we will introduce terms that apply to both Definition 2 and

3 rather than redundantly repeating arguments common to both definitions. First,

let us define the generic user orthogonality parameters

ε ∈ {εq, εr}, (4.1)

and

θ ∈ {θq, θr}. (4.2)

Since the channel estimates are random, the inner product of these vectors is also

random. We define the random variable Vq = ‖hHi hj‖2 whose realizations are vq.

Similarly, we define the random variable Vr = Re{hHi hj}2 whose realizations are vr.

We also define the generic inner product random variable

V ∈ {Vq,Vr}, (4.3)

whose realizations are given by v. Thus the distribution of V depends on whether a
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REO or QEO inner product is assumed. We also define the generic spherical cap

Ci ∈ {Ciq , Cir}; (4.4)

a more formal definition is provided in the ensuing discussion, specifically Eqs. (4.6)

and (4.7) and Fig 4.1.

Given a N × 1 complex vector hi ∈ CN , let us define the surface of the complex

unit hyper-sphere in N dimensions as

SN ≡ {hi ∈ CN : ‖hi‖2 = 1} . (4.5)

Orthogonality between pairs of vectors can be interpreted geometrically on the

surface SN in terms of spherical caps. A spherical cap is defined on SN by first

defining the point Pi ∈ SN corresponding to hi. Then a cone, with apex at the origin

of the sphere, O, and co-latitude angle θ centered along the axis of hi is intersected

with the spherical surface. This intersection defines spherical cap, Ci. A graphical

interpretation is shown in Fig. 4.1.

We define θq = arccos(
√
εq) ∈ [0, π

2
] as the co-latitude of QEO cap, Ciq . Similarly,

given the definition of Ci and Definition 3, we define θr = arccos(
√
εr) ∈ [0, π

2
] as the

co-latitude of REO cap, Cir . More formally, we have

Ciq ≡ {Pj : arccos(E

{
‖hHi hj‖2

}
) < θq}

∀ Pj ∈ SN ,

(4.6)
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SN

O

θr

Cir(θr) hi

hj

Pi
Pj

Figure 4.1: Definition of spherical cap Cir on the surface SN .

and

Cir ≡ {Pj : arccos(E

{
Re{hHi hj}2

}
) < θr}

∀ Pj ∈ SN ,

(4.7)

where Pj is an arbitrary point on the surface SN belonging to the vector hj.

The concept of spherical caps can be related to relaxed user orthogonality. This

is equivalent to vectors projected randomly onto SN with a uniform density indepen-

dently from another one. We define p⊥ as the probability that L spherical caps of

co-latitude angle θ on SN have an average overlap area less than or equal to ε,

p⊥ ≡ Pr[E{V } ≤ ε,∀i 6= j ∈ A, |A| = L]. (4.8)

Computation of p⊥ is approached as a random point packing problem.
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4.1 Random sphere packing formulation

Random point packing on a hyper-sphere of arbitrary dimension is a well-known

problem with a wide variety of applications. It is important to differentiate be-

tween random packing and deterministic packing problems. In the context of infor-

mation theory and communications Shannon famously formulated channel capacity

analysis as a deterministic hyper-sphere packing problem [19]. In this analysis, non-

overlapping spheres representing noisy codewords are packed into a larger spherical

space whose volume is a function of signal power. Thus, capacity becomes a ratio of

signal sphere volume to noise sphere volume (i.e. SNR). This problem differs from

the random sphere packing problem in the respect that codeword spheres are packed

at deterministic locations. In contrast, the locations of packing elements (i.e. spheres

caps, etc.) in the random sphere packing problem are stochastic. Therefore, packing

non-overlapping elements in the hyper-spherical space requires statistical analysis.

Existence of REO and QEO groups can be formulated as one such random packing

problem. The probability of finding an ε-orthogonal group becomes the probability

of packing L randomly placed caps with half-angle θ on SN with a limited amount of

average overlap. Analyzing and computing such a probability becomes increasingly

challenging as L grows. The probability of packing subsequent caps depends on the

placement of previous caps on SN . The placement of previous caps is stochastic as

well. Moreover, discrete caps can take any location on the continuous space SN . This

scenario becomes intractable very quickly.

Instead of attempting to compute the probability of packing L caps onto SN

directly, this quantity will be approximated by computing the mean fraction of non-

overlapping caps using Theorem 1 in [39].
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We define the indicator variable 1i as

1i(θ,A) =


0, if Ci( θ2) ∩ Cj( θ2) = ∅ ∀ j 6= i; j = 1 . . . L

1, otherwise.

(4.9)

We define Fo as fraction of overlapping caps given by

Fo =
1

L

L∑
i=1

1i(θ,A) . (4.10)

We now take the expectation of this expression in order to arrive at the expected

fraction of overlapping caps in A randomly packed onto SN . Since 1i is a discrete

indicator variable, its expected value is simply is probability of taking value 1. Thus

we have:

E{Fo)} =
1

L

L∑
i=1

E{1i(θ,A)}

=
1

L

L∑
i=1

Pr[1i(θ,A) = 1].

(4.11)

For a given cap realization or placement ci ∈ Ci, 1i will be zero if and only if we have

(L − 1) points Pj chosen independently who do not belong to Ci. The probability

that Pj /∈ Ci is related to the fractional area of SN that Ci covers. That is,

Pr[Pj /∈ Ci] = 1− 2
ΩN(θ)

ΩN(π)
, (4.12)

where we define ΩN(θ) as the area covered by a cap of colatitude θ (i.e. ΩN(π) is

the entire surface area of SN). Note the factor of two multiplied onto this term.

This factor of two appears due to the fact that co-linearity of vectors in negative and
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positive directions is equivalent. Since each point Pj is chosen independently of the

other, we have

Pr[1i(θ,A) = 1 | Ci = ci] = 1− (1− 2
ΩN(θ)

ΩN(π)
)L−1 , (4.13)

which is independent of our choice of ci, and thus the sum in Eq. (4.11) is independent

of the user, giving us

E{Fo} = 1− (1− 2
ΩN(θ)

ΩN(π)
)L−1 . (4.14)

Thus, we can compute p⊥ as

p⊥ = 1− E{Fo}

= (1− 2
ΩN(θ)

ΩN(π)
)L−1 .

(4.15)

While Eq. (4.15) gives us an expression for the expected fraction of intersecting caps

on SN as a function of θ, and L, we still must address the computation of fractional

cap cover 2 ΩN (θ)
ΩN (π)

.

4.2 Fractional cap cover

Several methods of computing fractional caps are presented in this work. Conceptual

examples are first presented, followed by further methods and results useful in the

context of this work.

4.2.1 Geometric expressions for real 2-sphere and real 3-sphere

Fractional cap areas can be computed exactly using analytic methods for the real

unit circle (2-sphere) and real unit sphere (3-sphere). We define ΩN
R (π) as the entire
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surface area of the real N -sphere. The surface of the unit circle in R2 is simply

its circumference: Ω2
R(π) = 2π. Therefore, for the 2-sphere the fractional cap area

becomes

2
Ω2

R(θ)

Ω2
R(π)

= 2
θ

π
. (4.16)

The surface area of the real unit sphere is easily computed adopting a spherical

coordinate system in R3. Using conventional spherical coordinates as parameters:

x = ρ cos(φ) sin(Θ)

y = ρ sin(φ) sin(Θ)

z = ρ cos(Θ) ,

(4.17)

where Θ is the colatitude angle, φ is the azimuth angle, and ρ is the radius of

the sphere. The differential area element on the sphere is well-known to be dA =

ρ2 sin(Θ) dΘ dφ, where ρ = 1 on the unit sphere.

The total area of the unit sphere is

Ω3
R(π) =

∫ 2π

0

∫ π

0

sin(Θ) dΘdφ

= 4π,

(4.18)

while the area of a cap whose cone has half-angle θ has area

Ω3
R(θ) =

∫ 2π

0

∫ θ

0

sin(Θ) dΘdφ

= 2π(1− cos(θ)) .

(4.19)
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Therefore the fractional area of a cap in R3 becomes

2
Ω3

R(θ)

Ω3
R(π)

= 1− cos(θ) . (4.20)

While these expressions are relatively routine, they provide a concrete test case to

compare other more flexible methods against.

4.2.2 Geometric approach on the real hyper-sphere

A geometric approach by [13] suggests fractional cover of a spherical cap on a real

hyper-sphere of N dimensions can be realized the incomplete regularized beta func-

tion.

We observe the following equality from Eq. (2.4):

Bsin2 θ(
N + 1

2
,
1

2
) = 2

∫ θ

0

sinN(φ) dφ . (4.21)

We will also make use of the expression for the surface area of an entire real

hyper-sphere with radius ρ in terms of the Gamma function:

ΩN
R (ρ, π) =

2πN/2

Γ(N/2)
(ρ)N−1 . (4.22)

As is illustrated in [13], the area of a spherical cap in N dimensions can be

calculated by integrating the surface of a sphere in N − 1 dimensions along the arc of

a great circle with radius ρ sinφ, where the arc element along the great circle is given

by ρ dφ. This integral can be expressed in terms of the Beta function given in Eq.
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(2.4).

ΩN
R (ρ, θ) =

∫ θ

0

ΩN−1
R (ρ sinφ, π) ρdφ

=
2πN−1/2

Γ(N − 1/2)
(ρ)N−1

∫ θ

0

sinN−2(φ)dφ

=
1

2
ΩN

R (ρ, π) Isin2(θ)

(
N − 1

2
,
1

2

) (4.23)

Therefore, the fractional cap cover is given by the incomplete regularized Beta func-

tion:

2
ΩN

R (θ)

ΩN
R (π)

= Isin2(θ)

(
N − 1

2
,
1

2

)
= I1−ε

(
N − 1

2
,
1

2

)
,

(4.24)

where the second equality holds since, from Eqs. (4.1), (4.2) and Fig. 4.1, ε = cos(θ).

The incomplete regularized Beta function is the CDF of a Beta-distributed random

variable. This gives rise to a statistical rather than a geometric interpretation. By

interpreting the incomplete regularized Beta function in Eq. (4.24) as a CDF, we

observe that inner products of estimated channel vectors in a real space are Beta-

distributed with the following shape parameters

I1−ε

(
N − 1

2
,
1

2

)
= Pr[(hTi hj)

2 ≤ 1− ε]. (4.25)

4.2.3 New Statistical approach on the complex hyper-sphere

Instead of approaching the problem geometrically as in[13], we take a novel statistical

approach the the problem. The advantage of pursuing a statistical approach is the

ease of extension to quadratic forms in CN . This is particularly useful in developing

expressions for fractional cap areas following from QEO and REO inner products.



4.2. FRACTIONAL CAP COVER 38

Fractional cap covers following from Definitions 2 and 3 are developed in Theorems

1 and 2, respectively.

Theorem 1. Given the cap Ciq on SN with co-latitude angle θq as defined by Eq.

(4.6), the fraction of the total surface area of SN covered by Ciq is given by

2
ΩN(θq)

ΩN(π)
= I1−εq

(
N − 1, 1

)
. (4.26)

Proof. We begin by fixing hi on SN , without loss of generality, in order to form the

inner product with hj. We write the inner product in the following quadratic form:

‖hHi hj‖2 = hHj hih
H
i hj. (4.27)

This expression can be re-written in terms of real-valued augmented vectors

‖hHi hj‖2 = hT
j
h
i
hT
i
h
j

= hT
j
Bh

j
,

(4.28)

where x = [Re{x}T Im{x}T ]T , xT = [Re{x}T − Im{x}T ], and B = h
i
hT
i

is a 2N×2N

fixed matrix.

B can be decomposed into the sum of two outer products B = B1 + B2, where

the outer products B1 and B2 are given as

B1 =

Re{hi}

Im{hi}


IN 0

0 0

[Re{hi}T Im{hi}T
]

,
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B2 =

Re{hi}

Im{hi}


0 0

0 −IN

[Re{hi}T Im{hi}T
]

,

Where IN is theN×N identity matrix. Since B1 and B2 are outer products, Ra(B1) =

Ra(B2) = 1; therefore, Ra(B) = 2, where Ra(·) is the rank operation.

Assuming both the real and imaginary parts of hi are normalized to unity, B will

be an idempotent matrix. Thus, by Theorem 1.5.7 [14], the inner product will be

Beta-distributed, i.e.,

‖hHi hj‖2 ∼ β(1,N − 1) (4.29)

and therefore, letting ‖hHi hj‖2 = Vq and since the CDF of a Beta-distributed variable

is given by the incomplete regularized Beta function, we have

FVq(εq) = Iεq

(
1,N − 1

)
, (4.30)

where FVq(εq) is the CDF of Vq. We note that since εq = cos(θq), we have sin2(θq) =

1− εq. We also remark that the CDF FVq(1− εq), εq ∈ [0, 1] is the mirror of FVq(εq).

Asserting the mirroring property of the Beta distribution (see Definition 1), we have

2
ΩN(θq)

ΩN(π)
= Isin2(θq)

(
N − 1, 1

)
. (4.31)

Theorem 2. Given the cap Cir on SN with co-latitude angle θr as defined by Eq.

(4.7), the fraction of the total surface area of SN covered by Cir is given by

2
ΩN(θr)

ΩN(π)
= I1−εr

(
2N − 1

2
,
1

2

)
, (4.32)
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The following proof adopts the same notation, and assumptions as the proof of

Theorem 1 unless otherwise stated.

Proof. We can write the widely-linear inner product in the following quadratic form

Re{hHi hj}2 = (

Re{hi}

0N

 [Re{hj}T 0TN ])2

= [Re{hj}T 0TN ]B

Re{hj}

0N

 ,

(4.33)

where 0N is an N × 1 vector of zeros. The fixed 2N × 2N matrix B is given by the

outer product

B =

Re{hi}

0N

[Re{hi}T 0TN

]
.

Thus, Ra(B) = 1. B is an idempotent matrix under the assumption that real and

imaginary parts of hi are normalized to unity. Thus, by Theorem 1.5.7 [14], the

widely-linear inner product will be Beta-distributed, i.e.,

Re{hHi hj}2 ∼ β

(
1

2
,
2N − 1

2

)
(4.34)

and therefore, letting Re{hHi hj}2 = Vr and since the CDF of a Beta-distributed

variable is given by the incomplete regularized Beta function, we have

FVr(εr) = Iεr

(
1

2
,
2N − 1

2

)
, (4.35)

where FVr(εr) is the CDF of Vr. We note that since εr = cos(θr), we have sin2(θq) =
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1− εr. We also remark that the CDF FVr(1− εr), εr ∈ [0, 1] is the mirror of FVr(εr).

Asserting the mirroring property of the beta distribution, we have

ΩN(θr)

ΩN(π)
= I1−εr

(
2N − 1

2
,
1

2

)
. (4.36)

4.2.4 Method based on Monte-Carlo integration

Contrasting analytic methods, we now propose a numerical approach to computing

the fractional cover of Ci. The proposed numerical approach computes this cover by

approximating the integral over the cap using Monte-Carlo methods.

Given the N -length vector of coordinates, C, that defines CN , the area of SN can

be expressed by the integral

ΩN(π) =

∫
SN
dC. (4.37)

Similarly, the area covered by the cap Ci ∈ SN can be expressed as

2ΩN(θ) = 2

∫
Ci
dC

=

∫
SN

1̂i(θ,S)dC,

where:

1̂i(θ,C) =


1, if: | < hi,C > |2 ≤ cos(θ)

0, otherwise

.

(4.38)

Note that the factor of two disappears in the second equality due to the absolute

value taken on the inner product.
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We can easily generate random realizations c ∈ C with uniform density on SN

according to [41]: each element in the vector c is realized from a standard normal

circular symmetric complex distribution and normalized such that it lies on SN . The

integral for the cap area can thus be approximated as

2ΩN(θ) ≈ ΩN(π)

Q

∑
c∈C

1̂i(θ, c), (4.39)

where Q is the number of realizations 1i(θ, c) is summed over in Eq. (4.39). As

the number of realizations in the arithmetic sum, Q, becomes very large, the sum

approaches the integral given in Eq. (4.38), thus we have

2
ΩN(θ)

ΩN(π)
= lim

Q→∞

1

Q

∑
c∈C

1̂i(θ, c). (4.40)

This approach is an alternative method for investigating fractional cap cover in-

dependent of methods previously presented based on the Beta Distribution.

4.2.5 Numerical and simulated results

We first provide examples that illustrate Theorems 1 and 2 comparing analytic curves

to Monte-Carlo simulations. Simulated data are computed by generating random

realizations uniformly on SN , summing those realizations which land in a given cap

area. When the number of realizations in the sum become sufficiently large, the

sum approximates an integral over the cap on SN according to Eq. (4.40), giving a

simulated fractional cap cover. Comparisons between analytic and simulated results

for Theorems 1 and 2 for N = 4, N = 16 are shown in Fig. 4.2.
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Figure 4.2: 2ΩN (θq)

ΩN (π)
and 2ΩN (θr)

ΩN (π)
given in Theorems 1 and 2 respectively, versus ε-

orthogonality (continuous curves). 40,000-trial Monte-Carlo simulation
computed according to Eq. 4.40 (discrete points).

From these curves we can make several observations. When interpreting the results

plotted in Fig. 4.2, low values ε represent large cap sizes since the degree of orthogo-

nality between vectors is high. Conversely, larger values ε correspond to smaller caps.

Following from this fact, we can see lower values ε lead to a larger fraction of the

spherical surface being covered by the cap as we expect. It is important to note that

method used to generate analytic curves holds for an arbitrary value of N ≥ L, thus

allowing for an arbitrarily large choice of N . This flexibility is particularly useful for

analyzing systems with a large number of antennas.

It is clear as seen from these plots that we have very close agreement between
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analytic and simulated results over a variety of dimensions. Confidence intervals are

omitted from plots in Fig. 4.2; however, analytic curves were found to be agreement

with simulated data within this interval.

We can also observe that QVS caps corresponding to Theorem 1 cover more of

the spherical surface than RVS caps corresponding to Theorem 2 for a given ε value.

Again, this result agrees with expectations. When the QEO inner product is relaxed

to be REO, we expect it to be easier to pack vectors onto the spherical surface. In

order to do so, the REO caps must be smaller with respect to the QEO caps.

Furthermore, by comparing curves in Fig. 4.2, we can see that fractional area of

the high-dimension case decreases more quickly as ε increases. This behaviour can be

explained in terms of orthogonality and the increase of dimension of the hyper-sphere.

A high degree of orthogonality between vectors on the hyper-sphere (low ε) is easier

to achieve since there are more degrees of freedom present. The presence of these

extra degrees of freedom make the largest difference for medium-sized caps. When ε

is very small, the caps are so large that the sphere dimension does not matter: the

cap will cover almost the entire surface. Conversely, when ε is large, the caps are so

small that it does not matter how many dimensions or degrees of freedom we have

on the sphere: the cap will cover a very small area on the surface.

The fractional cap cover results consider the placement of a single cap on SN . We

now investigate the scenario where multiple caps are placed on the surface.

The first computation we investigate is p⊥. In particular, we are interested in

quantifying p⊥ as a function of the number of antennas, N ; the number of users in

the group, L; and ε. The results plotted in Fig. 4.3 illustrate several scenarios. Again,

analytic curves are compared to Monte-Carlo simulations.
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Figure 4.3: Analytic RVS p⊥ plotted (continuous curves) as a function of εr. 10,000-
trial Monte-Carlo simulation computed according to Eq. (4.40) (discrete
points).

From Fig. 4.3, we can observe that simulated results are in agreement with ana-

lytic results for a variety of dimensions N , and numbers of caps, L. We also observe

that results make sense intuitively in several regards. When the caps are large (low

ε), then p⊥ is very small: the caps are large, therefore they frequently overlap. Con-

versely, when the caps are small, the frequency of overlap is small: therefore, p⊥ is

large.

Several additional observations can also be made from the curves and data in Fig.

4.3 in comparing the N = 3, L = 3 and N = 3, L = 2 curves. We can see the

first curve is always less than that belonging to the second. This is as expected since
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there are more caps to be packed onto a sphere of the same degrees of freedom in

the first curve relative to the second. We also observe that as N increases, so does

p⊥. This is illustrated by comparing N = 2, L = 2 and N = 3, L = 2 curves.

The second of these curves is greater than the first. Again we note that the analytic

results hold for an arbitrarily large value of N . Relatively low numbers of antennas

are considered to make comparisons to simulation. In contrast to analytic results,

the resources required to compute simulated results grows rapidly with the number

of antennas and group size.

4.3 Dependent groups

Calculating the probability of finding a single group that satisfies our orthogonality

criteria, Pr[Sε 6= ∅] as a function of L, K, θ(ε) is of particular interest. In order to

work up to this result, let us first consider the case that K = L. In this case, there

is only one non-null subset of C, that is C itself.

Pr[Sε 6= ∅ | L = K] = p⊥. (4.41)

However, in the case that K > L, we must now consider multiple subsets of C. We

introduce the indicator random variable 1A which takes value 1 when A ∈ Sε and 0,

otherwise.

1A ≡


1, if A ∈ Sε

0, otherwise.

(4.42)
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The number of ε-orthogonal sets in Sε may be expressed as

K(L)
ε ≡ |Sε|

=
∑
A⊂C

1A.
(4.43)

We can now apply Eq. (4.41) to Eq. (4.43). We require the union of events corre-

sponding to the existence of group sizes, j, in the range L ≤ j ≤ K,

Pr[Sε 6= ∅] =
K∑
j=L

Pr[K(j)
ε > 0]. (4.44)

A tractable expression to compute the argument of the sum is required. The argu-

ments of the sum in Eq. (4.43) are not necessarily independent. This follows from the

fact that the arbitrary subsets of C may have intersections. Therefore, the random

variables that correspond to these sets may also be dependent. For example, consider

two subsets of C, A ⊂ C and B ⊂ C. In the case that A∩B = ∅, the indicator random

variables 1A and 1B will also be independent. However, when A ∩ B 6= ∅, then the

random variables 1A and 1B are dependent.

To account for this dependence in developing an accurate bound on Pr[Sε 6= ∅],

the following graph-based approach will be adopted as in [12], [40]. Firstly, a graph

will be generated based on the multiplication of the channel matrix and its conjugate

transpose (Hermitian). The resulting square matrix is then transformed based on the

channel orthogonality constraints given in Eqs. (3.10) and (3.11). This is approach

taken by [12]. The transformed elements that remain in the matrix after this are then

interpreted as a graph which can be used to quantify the sum given in Eq. (4.43)

using the method given by [40].
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Let us define HK as the channel matrix whose columns are the channel vectors

corresponding to the set of candidate vectors C. Therefore, HK is a N ×K matrix.

Next let us define the K ×K square matrix given by

GK = HH
KHK . (4.45)

At this time, take a moment to note what the elements of GK represent. The diagonal

elements of GK are the norm of the channel estimates and, therefore, set to unity

under the assumption of channel normalization. The off-diagonal elements are the

inner products between the various channel vectors. Let us define

Λ = T(GK , θ), (4.46)

which transforms the matrix GK into the graph Λ. The transformation T operates

as follows: first we draw K vertices in Λ: one for each term along the main diagonal

of GK . Next, starting in the first row of GK , we compare off-diagonal elements to ε-

orthogonal user constraints. We draw an edge between the first vertex and the vertex

of a given column index if that off-diagonal element is less than ε. We proceed to the

second row drawing edges using the same rule, skipping edges if they already exist.

This process is continued for all K rows in GK until all the edges in Λ are drawn.

Let us take a moment to draw connections between the graph Λ and the ε-

orthogonal group definitions given in Eqs. (3.10) and (3.11). The number of vertices

in the graph is the same as the cardinality of the set of candidate vectors |C| = K.

The collection of sets Sε in Eqs. (3.10) and (3.11) can be represented in Λ by forming

graph A which is defined as the collection of
(
K
L

)
L-tuples, A, on the vertices of Λ,
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regardless of whether or not edges exist, then testing against ε. The graph interpre-

tation can be related to 1A in terms connectivity between vertices. If the L-tuple of

vertices, A ∈ Λ is fully connected, then 1A = 1, otherwise 1A = 0. Moreover, A can

also be interpreted as a graph representing dependence between L-tuples. Each of

the L-tuples A ∈ A is a vertex. Vertices in A are connected with an edge if they

share a common element between tuples.

It is important to note before proceeding that 1A is a Bernoulli-distributed random

variable, which takes value 1 with probability p⊥. A requirement of using the approach

in [40] is that 1A and 1B be independent so long as there is no intersections between

the sets A and B. This may appear to be a redundant statement; however, if the

random variables upon which 1A and 1B depend are correlated, this condition does

not hold. However, since we assume independence between channel estimates, the

assumption holds.

Two upper bounds are given in [40]. First, according to Theorem 2.1, [40]:

Pr[K(L)
ε ≤ E{K(L)

ε } − x] ≤ exp

(
−2x2

χ∗(A )|A |

)
; (4.47)

second, according to Corollary 2.4 [40]:

Pr[K(L)
ε ≤ E{K(L)

ε } − x] ≤ exp

(
−8x2

25χ∗(A )p⊥|A |

)
, (4.48)

where χ∗(A ) is the fractional chromatic number of the dependency graph A .

In our case, we are particularly interested in the case Pr[K
(L)
ε = 0] correspond-

ing to Eq. (4.44). In order to arrive at this result we manipulate the expressions
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given in Eqs. (4.47),(4.48) as follows: first, we notice that the sum of Bernoulli ran-

dom variables results in a binomial distribution for K
(l)
ε . The mean of the binomial

distribution, regardless of dependence in the sum, is given by

E{K(L)
ε } = |A |p⊥

=

(
K

L

)
p⊥.

(4.49)

It can be shown similarly to [40] Example 4, that so long as the conditions of inde-

pendence hold as described above, χ∗(A ) can be bounded as:

χ∗(A ) ≤ χ∗(Λ) ≤
(
K
L

)
bK
L
c

. (4.50)

Thus, following from Eq. (4.47):

Pr[K(L)
ε = 0] ≤ Pr[K(L)

ε ≤ 0]

≤ exp

(−2p2
⊥
(
K
L

)2

(KL)
bK
L
c

(
K
L

) )

= exp

(
− 2p2

⊥b
K

L
c
)

.

(4.51)

Similarly, following from Eq. (4.48):

Pr[K(L)
ε = 0] ≤ Pr[K(L)

ε ≤ 0]

≤ exp

( −8p2
⊥
(
K
L

)2

25
(KL)
bK
L
cp⊥
(
K
L

))

= exp

(−8p⊥bKL c
25

)
.

(4.52)
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Finally to guarantee an upper bound on Pr[K
(L)
ε = 0], we have:

Pr[K(L)
ε = 0] ≤ exp

(
−max

{
8p⊥bKL c

25
, 2p2

⊥b
K

L
c
})

. (4.53)

Therefore, following from Eqs. (4.43),(4.44),(4.53), we can write the lower bound

on Pr[Sε 6= ∅] as

Pr[Sε 6= ∅] ≥
K∑
j=L

(1− exp

(
−max

{
8p⊥bKj c

25
, 2p2

⊥b
K

j
c
})

).
(4.54)

Eq. (4.54) is significant in that it gives us a bounding function that describes the prob-

ability of finding a ε-orthogonal group of users in terms of key parameters L, K, N ,

and ε.

4.3.1 Numerical and simulated results

Now that results have been extended to consider multiple caps on a spherical surface,

we seek to extend the numerical results to consider the scenario where this group of

caps is selected from a pool of K candidates. We consider the scenario where L = 4,

K = 30. A large number of candidate users is assumed to reflect a densely deployed

wireless network. Analytic results from Eq. (4.54) are compared to Monte-Carlo

simulations.
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Figure 4.4: Pr[Sε 6= ∅] for L = 4, K = 30 plotted as a function of ε. Continuous
analytic curves are a lower-bound on group existence probability given by
Eq. (4.54). 80,000-trial Monte-Carlo simulation computed according to
Eq. (4.40) (discrete points).

Fig. 4.4 reiterates some of the observations made in Fig. 4.3. Again, we observe a

higher Pr[Sε 6= ∅] for RVS than QVS. This is unsurprising since the analytic curves

in Fig. 4.4 are a function of analytic curves presented previously in Figs. 4.2 and

4.3. Consider a constant group existence probability of Pr[Sε 6= ∅] = 0.5 for the

purpose of quantitative RVS-QVS comparisons. From Fig. 4.4 we observe εq = 0.53

and εr = 0.34 for QVS and RVS,respectively, to achieve the desired group existence

probability of 0.5, for N = 4 transmit antennas. Similarly we observe εq = 0.23

and εr = 0.12 for N = 16. It is clear that the additional degrees of freedom from

more transmit antennas allows for more strict orthogonality between users for a given
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group existence probability. It is also clear the the RVS criterion is able to achieve

better orthogonality between users than the QVS criterion for a given group existence

probability and number of antennas. Again, we note that the analytic results hold for

an arbitrarily large value of N . Relatively low numbers of antennas are considered to

make comparisons to simulation. In contrast to analytic results, the computational

resources required for simulated results grow rapidly with the number of antennas

and group size.

From Fig. 4.4, we can see that there are several factors that impact how tight Eq.

(4.54) bounds simulated data. We observe that the analytic and simulated curve agree

more closely for N = 16 than for N = 4, and more closely for RVS than for QVS. It is

also important to note that results in [40] used in Eq. (4.54) assume a large amount

of independence between arguments of the sum. Therefore, for the bound to be tight,

there must relatively few users common between candidate groups. Thus, as in [40],

we require K >> L (i.e., the candidate groups will have a large amount of statistical

independence). This criterion is well-suited to the scenario we are interested in. In

a densely deployed scenario, it is likely the candidate pool will be large. We are also

interested in modelling systems with many antennas; in this scenario, the analytic

bound is tighter and the system can support a large group size.

4.4 Chapter summary

The spherical abstraction and associated methods presented in this chapter provide

quantitative insights into the probability of ε-orthogonal group existence in the con-

text of QVS and RVS models. Results illustrate trade-offs in terms of system and en-

vironmental parameters including the number of antennas at the transmitter, number
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of users in the group, and number of candidates (density of users in the environment).

Analytic results incorporate a new statistical approach to computing fractional cap

area in a random sphere packing context. The analytic approach developed scales

well to systems with a large number of antennas. Simulated results utilize a novel

approach abstracting Monte-Carlo integration to the spherical space of the random

packing problem. The results generated in this chapter provide a deeper understand-

ing of orthogonality criteria that underpin many practical user selection algorithms

and enable further system performance analysis.
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Chapter 5

SDMA Beamforming

Performance of the MIMO system depends on the specific beamforming scheme

adopted by the system. Several linear beamforming schemes are investigated to bet-

ter understand the trade-offs associated particular schemes. Five linear beamforming

schemes are considered: maximum-ratio transmission beamforming (MRTBF), widely

linear MRTBF (WL-MRTBF), zero-forcing beamforming (ZFBF), regularized ZFBF

(RZFBF)[42, 43] , and widely linear RZFBF (WL-RZFBF). Each of these schemes

are first presented and discussed. Following this discussion, a subset of these schemes

are analyzed jointly with ε-orthogonal group criteria. The QEO and REO groups con-

sidered previously use MRT and RZFBF while the REO groups use WL-MRTBF and

WL-RZFBF. The objective of this joint analysis is to gain insight into the interaction

between ε-orthogonality and beamforming. MRTBF and RZFBF are considered in

the context of the QVS model. Similarly, motivated by [28, 29], WL-MRTBF and

WL-RZFBF are considered in the context of the RVS model.
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5.1 MRTBF and WL-MRTBF

Consideration of MRTBF is motivated by relatively low computational complexity

and maximization of SNR. While MRTBF neglects interference, the objective con-

straining user orthogonality is interference mitigation. In this sense, the analysis

illustrates how interference-mitigating user orthogonality constraints can be used to

support a low-complexity beamforming scheme that is optimal in the SNR sense.

We define the L × N MRT beamforming matrix WMRT . We also define the ith

row of WMRT as the 1 × N beamforming row vector wMRT
i for the ith user in the

group. Maximal signal gain is achieved when

WMRT = HH , (5.1)

by the Cauch-Schwarz inequality [25]. As shown by [28], the matrix WMRT is the

same for both MRTBF and WL-MRTBF. Although the beamforming vector is com-

mon between these schemes, WL-MRTBF is advantageous by being able to support

concurrent transmission to groups of size L ≤ 2N , while MRTBF only supports

groups of size L ≤ N (see Appendix [28]).

We assume a total of PMRT Watts is available at the transmitter. The total

transmit power is given by

PMRT = Tr(WMRT (WMRT )H)

=
L∑
i=1

‖wMRT
i ‖2

= L,

(5.2)
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where each user experiences an assumed equal-gain channel according to the system

model assumed in Chapter 3. Therefore, uniform power allocation is implicitly built

into channel assumptions for ε-orthogonal user selection MRTBF.

5.2 RZFBF

MRTBF is an optimal beamforming scheme in the SNR sense; it neglects interference.

Similarly, ZFBF is optimal in the SIR sense; it neglects noise. In contrast ZFBF

requires large amounts of power for poorly-conditioned scenarios [32, 42]. Transmit

beamforming that is optimal in the SINR sense is a well-known problem, whose

performance is achieved by MMSEBF[25]. The RZFBF scheme [42, 43] is also similar

to minimum-mean squared error beamforming (MMSEBF) scheme that is optimal in

the SINR sense. MMSEBF requires an estimate of the noise power or SNR. Based

on this estimate, the beamformer places emphasis on mitigating noise or interference

corruption of the received signal. MMSEBF does not necessarily assign transmit

power uniformly for each user; rather, the transmit power is optimally allocated such

that a function of SINR is maximized. Accurately estimating noise power with low

complexity is a challenging problem [26]. RZFBF substitutes this estimate for a scalar

regularization factor chosen at the transmitter. This factor ought to be chosen based

on whether a noise-limited or interference-limited environment is expected. However,

it is not a strict estimate of noise variance as in MMSEBF, nor is RZFBF optimal

in the same sense. The RZFBF scheme is motivated by its relative simplicity. Sub-

optimal uniform power allocation is assumed for RZFBF for the sake of simplicity:

optimal power allocation is an NP-hard problem [44].

Motivated by the SINR-optimal beamforming structure in Problem 2 [25] and [42]
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we present an expression for the L×N RZF beamforming matrix, WRZF . We assume

that we are given channel matrix H, and scalar regularization factor τ . The RZFBF

is given by

WRZF = (IL +
HHH

τ
)−1HH , (5.3)

where IN is the N ×N identity matrix. We also note that N ≥ L, and therefore the

Moore Penrose pseudo-inverse in Eq. (5.3) is taken as the left inverse.

The term τ acts as a scaling factor between MRTBF and ZFBF schemes. Let

us consider Eq. (5.3) in a low SNR scenario. If we expect to be in a low SNR

environment, we choose a large value for τ . Thus we have

lim
τ→∞

WRZF = HH

= WMRT .

(5.4)

Eq. (5.4) illustrates that when the SNR becomes low, RZFBF converges to an

MRTBF, which neglects interference to compensate for the purely noise-limited chan-

nel. Conversely, when SNR is high, a small value of τ is chosen, and the RZFBF con-

verges to the ZFBF, which neglects noise to compensate for the purely interference-

limited channel.

The transmit power of MRTBF is constrained (and finite). This power constraint

does not hold for RZFBF and ZFBF since WRZF and WZF involve inverting matrices

which may have determinants close or equal to 0, causing the transmit power required

to realize these beamforming matrices to be very large. Thus, assuming we have a

total transmit power PRZF available, we hold WRZF subject to

Tr(WRZF (WRZF )H) ≤ PRZF . (5.5)
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We define the 1×N row vector wiRZF as the ith row of WRZF , which belongs to the

ith user in the ε-orthogonal group. We assume uniform power allocation, allocating a

magnitude of
√

PRZF
L

to each vector. Therefore, we have the normalized beamforming

vector

w̃RZFi ≡
√
PRZF
L

wRZFi

‖wRZFi ‖
(5.6)

In summary, under uniform power allocation we express the power constraint as

PRZF =
L∑
i=1

‖w̃RZFi ‖2. (5.7)

5.3 WL-RZFBF

In contrast to MRTBF, ZFBF and MMSEBF has different beamforming matrices

depending on whether a widely-linear or conventional variant of the beamforming

scheme is assumed [28]. Motivated by this result, we develop a widely-linear variant

of regularized zero-forcing beamforming (WL-RZFBF). We distinguish between WL-

RZFBF and widely-linear MMSEBF (WL-MMSEBF) in the sense that WL-RZFBF

does not achieve optimal WL-MMSE performance, although it is based on the same

principles and structure as the MMSEBF.

Based on the optimal WL-MMSEBF structure developed in [28] and the RZFBF

structure from [42], we define the WL-RZFBF beamforming matrix as

WWLRZF = (IL +
Re{HHH}

τ
)−1HH . (5.8)

Uniform power allocation for WL-RZFBF is performed using a similar method as for

RZFBF.
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5.4 Joint analysis of beamforming and user orthogonality for maximum

interference power case

A primary objective of this work is to investigate the interaction between constraining

user orthogonality and beamforming. In order to do so, we focus on the special case of

maximum interference power allowed by user orthogonality constraints. In this special

case, the interference power for each user in the group is assigned the same maximum

value on a power basis. This scenario is of particular interest for several reasons.

Assignment of maximum interference power to each user in the group allows us to

characterize the maximal impact of user selection algorithms in a power sense. The

analysis of this scenario provides a conservative reference, since interference power

is held to a maximum value, to compare against practical user selection algorithm

performance. In this special case, we have implicitly set interference power for each

user to the same value. Assuming the system implements a practical user selection

algorithm, uniform interference power amongst users is reasonable. It is probable that

a user selection algorithm will distribute interference on a somewhat uniform basis

amongst users in the group, thus ensuring fairness and avoiding spatial clustering of

users.

We define Gsig and Gint, as the signal and interference beamforming gains a given

user in the group, respectively in the maximum interference power scenario. No

specific beamforming scheme is assumed for Gsig and Gint. When a system adopts

beamforming scheme x, we adopt the following notation for the ensuing analysis:

Gsig = Gx
sig, Gint = Gx

int, W = Wx, and wi = wxi . Interference and signal gain will

be analyzed for RZFBF, WL-RZFBF, then extended to the MRTBF using Eq. (5.4).
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5.4.1 RZFBF analysis

Given an N × L matrix of channel vectors H held subject to QEO user selection,

define

H2
L ≡



1
√
εq · · ·

√
εq

√
εq 1 · · · √εq
...

. . . . . .
...

√
εq
√
εq · · · 1


, (5.9)

where the off diagonal elements of H2
L are hHi hj . The maximum average interfer-

ence power allowed by the QEO user orthogonality constraint in Eq. (3.10) yields

E{‖hHi hj‖2} = εq.

Given the regularization factor, τ , define the matrix

G2
L ≡

(
IL +

H2
L

τ

)−1

=



Ξ ξ · · · ξ

ξ Ξ · · · ξ

...
. . . . . .

...

ξ ξ · · · Ξ


, (5.10)

where IL is the L× L identity matrix.

Define the power-normalizing factor

Pq ≡
√

(G2
LHHH(G2

L)H)i,i, (5.11)

where (X)i,i denotes the ith diagonal element of the matrix X.

Proposition 1. Given WRZF = (IL + HHH
τ

)−1HH and QEO user constraints, the
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RZFBF signal and interference gains are, respectively,

GRZF
sig =

1

Pq

√
PRZF
L

τ
(
εq(1− L) +

√
εq(L− 2) + τ + 1

)
(1 + (L− 1)

√
εq + τ)(1−√εq + τ)

(5.12)

and

GRZF
int =

1

Pq

√
PRZF
L

(τ)2√εq
(1 + (L− 1)

√
εq + τ)(1−√εq + τ)

. (5.13)

Proof. The eigen decomposition of H2
L is

H2
L =

L∑
i=1

λieie
H
i , (5.14)

where ei is the L × 1 eigenvector of H2
L corresponding to eigenvalue λi. We let

e1 = 1√
L

1L, where 1L is an L × 1 vector whose elements are each unity. Thus,

Eq.(5.14) becomes

H2
L = (1−√εq)IL +

√
εq1L1HL . (5.15)

The first rank-L term in this sum has L eigevalues = (1 − √εq) while the second

rank-1 term has a single eigenvalue = L
√
εq. Thus, the eigenvalues of H2

L are clearly

λ1 = (1−√εq) + L
√
εq = 1 + (L− 1)

√
εq ,

λ2 = λ3 . . . = λL = 1−√εq .

(5.16)

The eigen decomposition of G2
L is

G2
L =

L∑
i=1

τ

λi + τ
eie

H
i , (5.17)
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where the eigenvectors and values are the same as those given in Eq. (5.14). There-

fore, we have

G2
L =

τ

1 + (L− 1)
√
εq + τ

e1e
H
1 +

L∑
i=2

τ

1−√εq + τ
eie

H
i . (5.18)

The collection of eigenvectors ei ∀i = 1, 2 . . . L form an ortho-normal set by defini-

tion. Thus, IL =
∑L

i=1 eie
H
i , which implies

∑N
i=2 eie

H
i = IL− e1e

H
1 . Therefore, we can

re-write the decomposition in Eq. (5.18) as

G2
L =

τ

L(1 + (L− 1)
√
εq + τ)

1L1HL +
τ

1−√εq + τ
IL −

τ

L(1−√εq + τ)
1L1HL

=
τ1L1HL
L

(
1

(1 + (L− 1)
√
εq + τ)

− 1

1−√εq + τ

)
+

τ

1−√εq + τ
IL

=
−τ√εq1L1HL

(1 + (L− 1)
√
εq + τ)(1−√εq + τ)

+
τ

1−√εq + τ
IL.

(5.19)

From the definition of G2
L, we have

Ξ =
τ(1 + (L− 2)

√
εq + τ)

(1 + (L− 1)
√
εq + τ)(1−√εq + τ)

, (5.20)

and

ξ =
−τ√εq

(1 + (L− 1)
√
εq + τ)(1−√εq + τ)

. (5.21)

We define the 1×N row vector g
i

as the ith row of the product G2
LHH .

We also define the 1×N row vector g
i

as the ith row of the product G2
LHH . Thus,

in the context of the maximal allowable interference power case, the signal gain is
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given by

GRZF
sig = E

{
1

Pq

√
PRZF
L

g
i
hi

}
=

1

Pq

√
PRZF
L

(Ξ ‖hi‖2 + ξ E{
L∑

l=16=i

N∑
k=1

h∗lkhik})

=
1

Pq

√
PRZF
L

(Ξ + ξ(L− 1)
√
εq)

=
1

Pq

√
PRZF
L

τ(εq(1− L) +
√
εq(L− 2) + τ + 1)

(1 + (L− 1)
√
εq + τ)(1−√εq + τ)

.

(5.22)

Similarly, the interference gain is given by

GRZF
int = E

{
1

Pq

√
PRZF
L

g
i
hj

}
∀ j 6= i = 1, 2, . . . L

=
1

Pq

√
PRZF
L

(Ξ E{hHi hj}+ ξ E{
∑
l=16=i

N∑
k=1

h∗lkhjk})

=
1

Pq

√
PRZF
L

(Ξ
√
εq + ξ(1 + (L− 2)

√
εq)

=
1

Pq

√
PRZF
L

(τ)2√εq
(1 + (L− 1)

√
εq + τ)(1−√εq + τ)

.

(5.23)

5.4.2 MRTBF analysis

RZFBF converges to MRTBF as τ → ∞ according to Eq (5.4). From Proposition 1

we have

GMRT
sig = lim

τ→∞
GRZF
sig

=
(τ)2

(τ)2

= 1.

(5.24)
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Similarly, from Proposition 1, Eq. (5.13) we have

GMRT
int = lim

τ→∞
GRZF
int

=

√
εq(τ)2

(τ)2

=
√
εq.

(5.25)

5.4.3 WL-RZFBF analysis

Given an N × L matrix H of channel vectors held subject to REO user selection,

define

Re{H2
L} ≡



1
√
εr · · ·

√
εr

√
εr 1 · · · √εr
...

. . . . . .
...

√
εr
√
εr · · · 1


, (5.26)

where the off diagonal elements of H2
L are Re{hHi hj} . The maximum average

interference power allowed by the REO user orthogonality constraint in Eq. (3.11)

yields E{Re{hHi hj}2} = εr.

Given the regularization factor, τ , define the matrix

Re{G2
L} ≡

(
IL +

Re{H2
L}

τ

)−1

=



Ξr ξr · · · ξr

ξr Ξr · · · ξr
...

. . . . . .
...

ξr ξr · · · Ξr


, (5.27)
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where IL is the L× L identity matrix. Define the power-normalizing factor

Pr =

√
(Re{G2

L}HHH(Re{G2
L})H)i,i, (5.28)

Proposition 2. Given WWLRZF = (IL + Re{HHH}
τ

)−1HH and REO user constraints,

the WL-RZFBF signal and interference gains are, respectively,

GWLRZF
sig =

1

Pr

√
PWLRZF

L

τ(
√
εr
√
εq(1− L) +

√
εr(L− 2) + τ + 1)

(1 + (L− 1)
√
εr + τ)(1−√εr + τ)

(5.29)

and

GWLRZF
int =

1

Pr

√
PWLRZF

L

τ((1 + τ)
√
εq −
√
εr)

(1 + (L− 1)
√
εr + τ)(1−√εr + τ)

. (5.30)

Proof. Substituting Re{H2
L}, Re{G2

L} for H2
L, G2

L in the proof of Proposition 1 and

following the same method to Eqs. (5.20) and (5.21), we have

Ξr =
τ(1 + (L− 2)

√
εr + τ)

(1 + (L− 1)
√
εr + τ)(1−√εr + τ)

, (5.31)

and

ξr =
−τ√εr

(1 + (L− 1)
√
εr + τ)(1−√εr + τ)

. (5.32)

We define the 1×N row vector g
i
as the ith row of the product Re{G2

L}HH . Therefore,

in the context of the maximal allowable interference power case, the signal gain is
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given by

GWLRZF
sig = E

{
1

Pr

√
PWLRZF

L
g
i
hi

}
=

1

Pr

√
PWLRZF

L
(Ξr ‖hi‖2 + ξr E{

L∑
l=16=i

N∑
k=1

h∗lkhik})

=
1

Pr

√
PWLRZF

L
(Ξr + ξr(L− 1)

√√
εr)

=
1

Pr

√
PWLRZF

L

τ(
√
εr
√
εq(1− L) +

√
εr(L− 2) + τ + 1)

(1 + (L− 1)
√
εr + τ)(1−√εr + τ)

.

(5.33)

Similarly, the interference gain is given by

GWLRZF
int = E

{
1

Pr

√
PWLRZF

L
g
i
hj

}
∀ j 6= i = 1, 2, . . . L

=
1

Pr

√
PWLRZF

L
(Ξ E{hHi hj}+ ξ E{

∑
l=16=i

N∑
k=1

h∗lkhjk})

=
1

Pr

√
PWLRZF

L
(Ξ
√
εq + ξ(1 + (L− 2)

√
εq)

=
1

Pr

√
PWLRZF

L

τ((1 + τ)
√
εq −
√
εr)

(1 + (L− 1)
√
εr + τ)(1−√εr + τ)

.

(5.34)

We also note that Theorems 1 and 2 can be used to convert between equivalent

values of εr and εq for a given Pr[Sε 6= {∅}], or p⊥.

5.4.4 Numerical results

We investigate Proposition 1 numerically to gain further insights. Gain terms GRZF
sig

and GRZF
int from Proposition 1 are plotted in left-hand and right-hand plots of Fig.

5.1, respectively, for various values of regularizing factor, τ .
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Figure 5.1: Analytic RZFBF of signal (left) and interference (right) gains from Propo-
sition 1 as a function of εq, L = 4, N = 16, PRZF = L..

The GRZF
sig curves plotted in the left-hand plot of Fig. 5.1 decreases as εq increases.

This trend agrees with expected behaviour: as interference in the system increases,

the signal gain is sacrificed to mitigate interference. We observe that GRZF
sig has a

stronger dependency on εq for low τ than for high τ . This is characterized by a

greater decrease in GRZF
sig for low τ than for high τ , observed in the left-hand plot of

Fig. 5.1. In one respect this agrees with expectations: we expect GRZF
sig to converge to

GMRT
sig in high τ , thus explaining the behaviour we see in this curve. However, a lower

GRZF
sig for low τ than for high τ is somewhat counter-intuitive as it suggests lower

system performance in low τ than for high τ . However, we are only considering part

of the system, we should also consider the behaviour of GRZF
int in the right-hand plot
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of Fig. 5.1 to observe a more complete characterization of the system performance.

In contrast to the left-hand plot in Fig. 5.1, we observe that GRZF
int increases

with εq in the right-hand plot of Fig. 5.1. Since εq is a measure of interference in

the system, this agrees with what we expect. We also observe that high τ curves

experience larger interference than low τ curves. This agrees with intuition: high τ

translates low SNR to relatively poor system performance. It is important to note

that GRZF
int values are scaled by a sum of L − 1 interfering symbols, whereas Gint is

only scaled by a single symbol. We expect the interference experienced by the system

to be higher in this sense. Therefore, comparing the left-hand and right-hand plots of

Fig. 5.1 directly is an unfair comparison of system performance. Thus, we expect the

superior interference performance of low τ curves in the right-hand plot of Fig. 5.1 to

compensate for the inferior signal performance of low τ curves in Fig. 5.1, resulting

in superior system performance at high SNR than at low SNR.
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Chapter 6

System Performance Analysis

System performance is analyzed in terms of reliability, efficiency and throughput using

several metrics. Reliability and efficiency of transmission in the system are evaluated

in terms of symbol error rate (SER) assuming no channel coding (as this analysis

is at the physical layer). Single-user outage rate is selected as a metric to evaluate

single-user throughput. Lastly throughput of the group is evaluated in terms of mean

group sum rate. Performance analysis depends on many factors outlined in previous

chapters including choice of modulation, beamforming, and ε-orthogonality; not to

mention parameters such as number of antennas, group size, and number of candidates

that impact these schemes, themselves. Thus, there are many valid permutations

of these choices in the larger system. In order to manage these permutations, the

system model of interest is classified as either a QVS or RVS model and performance

is presented through the lens of this classification.

6.1 Symbol Error Rate

An analytic approach is taken in computing SER. We define fRi|Si(ri | si) as the

interference-averaged PDF of the ith user’s noisy received signal conditioned on the
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transmission of a given symbol from Eq. (3.9). Assuming uniform transmission

probability of symbols in the constellation, the SER is computed as

SER =
1

M

M∑
l=1

M∑
k=16=l

∫
Rk
fRi|Si(ri| si = s(l)) dri , (6.1)

where R1,R2, . . . RM are the Voronoi regions of the constellation. A constant trans-

mission power and noise power spectral density (i.e. constant SNR) is also assumed

over the integration. Let us define the interference random variable Zi with realiza-

tions zi ∈ Zi. Similarly, we define fZi(zi) as the PDF of Zi, and fRi|Zi(ri|zi) as Ri’s

PDF conditioned on Zi. The PDF fRi|Si(ri|si) can be computed as

fRi|Si(ri|si) =
∑
zi∈Zi

fRi|Zi,Si(ri|zi, si)fZi(zi). (6.2)

From Eq. (3.9) we let Zi =
∑L

j=16=iwihjSj, thus representing the interference for

the ith user in the group. Assuming a given transmit symbol for each of the users in

the group and AWGN, we have Ri ∼ NC(wihisi + zi, R) for quadrature modulated

symbols and Ri ∼ N (wihisi + zi,σ
2
n),where R = 1

2
σ2
nI2 and I2 is the 2 × 2 identity

matrix, NC(µ, νI2) is a circular-symmetric complex normal distribution with mean µ

and co-variance matrix νI2, and N (µ, ν) is a scalar normal distribution with mean µ

and variance ν.

6.1.1 SER for maximum interference power case

SER can be computed as a function of Gint and Gsig assuming the maximum inter-

ference power scenario. Given an ε-orthogonal group in the context of QVS and RVS
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models we have

Zi = Gint

L∑
j 6=i

Sj (6.3)

Symbols belonging to the jth user in the ε-orthogonal group, given by Sj, j 6= i, can

take one of M values from the constellation. It is assumed all users in the group

use the same modulation scheme . We also assume sj ∈ Sj is realized from the

set of possible symbols in the constellation with uniform probability. The sum in

Eq. (6.2) is taken over L − 1 users’ interfering symbols. Therefore, the result of

the sum may take ML−1 different values. Furthermore, the probability of each such

result is uniform since the distribution of the arguments sum are uniform themselves.

Therefore the PMF of Zi follows the uniform distribution

fZi(zi) =
1

ML−1

∫ ∞
−∞

δ(x− zi)dx ∀ zi ∈ Zi, (6.4)

where x ∈ R for amplitude modulation, and x ∈ C for quadrature modulation, and

δ(·) is the Dirac Delta funciton. Thus, fRi|Si(ri | si) for QVS and is given by

fRi|Si(ri | si) =
1

ML−1

∑
zi∈Zi

1

2πdet(R)

exp

(
− (ri −Gsigsi − zi)∗R−1(ri −Gsigsi − zi)

)
.

(6.5)

Similarly, for RVS we have

fRi|Si(ri | si) =
1

ML−1

∑
zi∈Zi

1√
2πσ2

n

exp

(
− (ri −Gsigsi − zi)2

2σ2
n

)
. (6.6)
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6.1.2 Numerical results for maximum interference power case

Numerical SER performance is investigated as a function of interference in terms of

εq for QVS models and εr for RVS models. We adopt a logarithmic SIR measure as

a function of these parameters in order to generate conventional log-log plots of SER

in Figs. 6.1-6.3.

We begin by considering the impact of the number of antennas on SER perfor-

mance. SER is plotted as a function of SIR measure for various numbers of antennas

and MRTBF assuming a RVS model in Fig. 6.1. The left-hand side of both plots in

Fig. 6.1 is characterized by a lax constraint on orthogonality, associated with higher

levels of interference in the system. Conversely, the right-hand side of both plots in

Fig. 6.1 is characterized by a higher degree of orthogonality between users and low

levels of interference in the system.
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Figure 6.1: RVS SER given by Eq. 6.1 plotted against SIR measure in terms of εr for
various numbers of antennas WL-MRTBF (left) and WL-RZFBF (right).
BPSK, SNR = 10dB, L = 8, and τ = σ2 are assumed.

From both plots in Fig. 6.1, it is clear that SER performance improves as the

constraint on orthogonality between users becomes more strict. This agrees with

expected behaviour, since the amount of interference in the system decreases as or-

thogonality between users increases. Reduced interference translates to improved

SER performance. Comparing the curves in either plot in Fig. 6.1, it is clear that

the number of antennas in the system, N , has an impact on SER performance. More

specifically, we notice that SER performance improves as N increases. Again, this

agrees with expected behaviour, since the beamformer is able to take advantage of

additional degrees of freedom provided by having more antennas than users in the
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group to mitigate interference. We also observe that the N = L = 4 curves in Fig.

6.1 exhibit the strongest dependence on εr. In other words, when the degrees of

freedom in the beamformer are small, user orthogonality assists the beamformer in

mitigating interference. When many antennas are present and the group size is small,

the beamformer is able to achieve adequate SER performance independent of user or-

thogonality. The N = 16 and N = 32 curves are associated with systems similar to a

massive-MIMO scenario. In systems where the number of antennas, N , is much larger

than the group size, L, the beamforming lobes become less isotropic and more focused.

Therefore, interference between lobes transmitting to various users is reduced with

the number of antennas, resulting in weaker dependence on user orthogonality.

We also note that the SER curves approach a SER floor for high SIR measure

values. This behaviour is explained by the fact that SER curves are plotted with

a constant SNR. When the SIR measure becomes large, the SER performance is

limited by noise rather than interference. Therefore, for high SIR values, the SER

performance approaches a floor resulting from the assumption of constant SNR.

Next we compare QVS and RVS SER results. The number of users in the ε-

orthogonal group, L, depends on the modulation scheme in order to ensure constant

maximum achievable group sum rate in the group. A maximum group sum rate of

8 bits/channel use is assumed for each curve in order to make a fair comparison.
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Figure 6.2: QVS SER given by Eq. 6.1 (left plot) plotted against SIR measure in
terms of εq. MRTBF, SNR = 10dB, and N = 4 are assumed. RVS SER
given by Eq. 6.1 (right plot) plotted against SIR measure in terms of εr.
WL-MRTBF, SNR = 10dB, and N = 4 are assumed.

From Fig. 6.2, we observe that QPSK is able to achieve better SER performance

than 4-PAM and 16-QAM. The SER curves are plotted for constant symbol energy.

This illustrates the expected power efficiency-spectral efficiency trade-off. We notice

the presence of a curve corresponding to BPSK modulation in the RVS plot of Fig.

6.2. No BPSK curve was included in the QVS plot of Fig. 6.2 because MRTBF

can only support L = 4 users for N = 4. Thus, the maximal sum rate for such a

group assuming BPSK is 4 bits/channel use. Making comparisons to other curves in

this context is unfair since these schemes all correspond to a maximum sum rate of 8
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bits/channel use. However; in WL-MRTBF assumed in the RVS model corresponding

to Fig. 6.2, the beamforming scheme can support L = 2N = 8. Therefore, inclusion

of such a curve is fair in the maximum sum rate sense. We also notice a small

improvement in SER performance in the 4-PAM RVS curve compared to the 4-PAM

QVS curve in high interference.

Plots of QVS and RVS SER performance for RZFBF are shown in Fig. 6.3.

The same schemes and parameters are assumed as in Fig. 6.2 with the exception of

beamforming.
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Figure 6.3: QVS SER given by Eq. 6.1 (left) plotted against SIR measure in terms of
εq. RZFBF, SNR = 10dB, and N = 4 are assumed. RVS SER given by
Eq. 6.1 (right) plotted against SIR measure in terms of εr. WL-RZFBF,
SNR = 10dB, N = 4, and τ = σ2 are assumed.
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Comparing the QVS and RVS plots in Fig. 6.3, we observe consistent behaviour

with previous QVS-RVS comparisons in Figs. 6.2. The RZFBF curves in Fig. 6.3

are less dependent on user selection than MRTBF curves in Fig. 6.2. This agrees

with expected behaviour since the RZFBF scheme mitigates interference while the

MRTBF neglects interference. Thus, constraining user orthogonality has a greater

impact on MRTBF SER performance than RZFBF SER performance.

6.2 Outage rate

Single-user throughput is evaluated in terms of outage rate. We begin by defining a

Bernoulli-distributed outage event, O; O = 1 when the system is in an outage and

O = 0 when the system is not in an outage. When the system is in an outage, we

assume the system is unable to transmit data. Conversely, when the system is not in

an outage, the system is able to transmit log2(M) bits/channel use to a given user in

the group. We define SERo as the outage SER of the system. SERo is the reliability

metric required to transmit without outage. There is a reliability-throughput trade-

off in the model. The system is able to achieve a high degree of reliability (i.e. low

SERo value) for low throughput (i.e. outage rate) values without being in outage.

Conversely, a high outage rate is achievable with a low SERo value without the system

being in an outage.

SERo can then be mapped back to an outage interference we define as vo. We

adopt a notation similar to Eq. (4.3, that is vo ∈ {voq , vor}), where voq is the QVS

outage interference and vor is the RVS outage interference. The probability of an

outage is computed by integrating the domain of the PDF belonging to interference

values that exceed the permissible outage interference. Following this approach, the
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probability of an outage event is given as

Pr[O = 1] =

∫ 1

vo

fV (v) dv . (6.7)

Given a modulation scheme with M symbols, We can write the single-user outage

rate for a given user as

Co = log2(M)(1− Pr[O = 1]) + 0 · (Pr[O = 1])

= log2(M)(1− Pr[O = 1]),

(6.8)

Co is also Bernoulli-distributed, as implied by Eq. (6.8). It is also implied that the

equality in Eq. (6.8) is conditioned on the existence of an ε-orthogonal group.

6.2.1 Numerical results for maximum interference power case

Single-user outage rate is plotted as function of interference, in terms of ε, in Fig. 6.4.

Co is plotted for for various modulation schemes belonging to RVS and QVS models.

RZFBF is assumed for QVS curves, while WL-RZFBF is assumed for RVS curves.

The left-hand side of the plot is characterized by low interference in the system, while

the right-hand side of the plot is characterized by high interference in the system.
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Figure 6.4: RVS and QVS single-user outage rate (bits per channel use) given by Eq.
(6.8) plotted as a function of user orthogonality constraint ε. RZFBF
assumed for QVS, WL-RZFBF assumed for RVS, N = 16, SNR= 10dB,
and τ = σ2.

Several observations can be made from the curves plotted in Fig. 6.4. Firstly, we

notice that rate is a monotonically decreasing function of interference; as interference

increases, rate decreases. We also notice that all modulation schemes are able to

achieve theoretical maximum rate if the constraint on user orthogonality is as strict

as possible (i.e. ε = 0) and interference in the system is eliminated. Comparing the

RVS and QVS BPSK curves is not fair in terms of achievable sum rate: the RVS curve

has twice as many users in the group compared to the QVS curve. However, this com-

parison favours the QVS curve, since the RVS curve will experience more interference

from the additional users in the group; yet, the RVS curve is still more resilient to
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interference than the QVS curve. This performance difference is illustrated by the

BPSK RVS curve achieving superior Co than the QVS BPSK curve for larger values

of ε. Since the REO group criterion in Definition 3 only cares about the real part

of the inner product rather than the magnitude, it is able to sustain larger amounts

of interference relative to the QEO definition while achieving the same throughput

performance.

6.3 Mean Sum Rate

The sum rate of the ε-orthogonal group is calculated as the sum of the single-user

outage rates belonging to users in the group. The outage rate for each user in the

group is assumed to be statistically independent assuming spatial separation of users.

Thus, the sum rate is a sum of L independent Bernoulli random variables, and there-

fore, follows a binomial distribution whose mean can be calculated using Eqs. (4.54)

and (6.8) and is given by

E{SR} = L · Co · Pr[Sε 6= ∅]

= L · log2(M)(1− Pr[O]) · Pr[Sε 6= ∅].
(6.9)

6.3.1 Numerical results for maximum interference power case

Numerical mean sum rates for ε-orthogonal groups are computed using Eq. 6.9 and

presented for QVS, then RVS models in the following figures. The numerical results

assume a dense deployment of users with many candidate users available; therefore,

K = 30 candidate users are assumed. A MIMO transmitter with N = 16 antennas

is assumed. In order to make fair comparisons, we assume that the same theoretical

maximum sum rate is achievable for each group. Thus, the number of users in the
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group depends on the modulation scheme. A theoretical maximum sum rate of 8

bits/channel use is assumed. We begin by investigating the QVS model assuming

MRTBF in Fig. 6.5.
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Figure 6.5: QVS mean sum rate (bits per channel use) given by Eq. (6.9) (right plot)
plotted as a function of εq for MRTBF. N = 16, K = 30, SNR=10dB.
RVS mean sum rate (bits per channel use) given by Eq. (6.9) (left plot)
plotted as a function of εr for WL-MRTBF. N = 16, K = 30, SNR=10dB.

From Fig. 6.5, we notice that peak sum rate is achieved in both RVS and QVS

models at an intermediate value of ε. That is, the constraint on user orthogonality

should be neither too strict, nor too lax. The domain of the user orthogonality pa-

rameter is ε ∈ [0, 1]. From Fig. 6.5, we notice that peak mean group sum rates are

achieved towards lower end of this domain, indicating there are performance benefits
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associated with being selective with the users we admit to the group. These perfor-

mance benefits are only enjoyed up to a point. If the user orthogonality constraint is

too demanding, it is unable to find users to add to the group, and system throughput

performance suffers.

We also notice from Fig. 6.5 that the peak sum rate depends on the modulation

scheme. There are several reasons for this behaviour. The number of users in the

group depends on the modulation scheme in order to make fair sum rate comparisons.

High-order modulation schemes have fewer users in a group. Since there are fewer

users in the group, it is much easier to find an ε-orthogonal group as computed in

Chapter 4; intuitively, fewer users need to be mutually ε-orthogonal for a small group,

thus, we have a higher probability of finding a group with fewer users in it. This

behaviour is clearly illustrated in Fig. 6.5. Consider the 16-QAM and BPSK curves

in the QVS plot of Fig. 6.5. We observe that peak sum rate is achieved at εq = 0.03

for 16-QAM compared to εq = 0.19 for BPSK. Therefore, as Fig. 6.5 illustrates, these

schemes are able to achieve mean sum rates near the theoretical maximum for a given

reliability metric; however, the value of εq that corresponds to these peak mean sum

rates depends on the modulation scheme.

Comparing mean sum rates in the RVS plot of Fig. 6.5 for BPSK and 4-PAM

to QVS BPSK and 4-PAM sum rates in Fig. 6.5 there are advantages associated

with RVS BPSK and 4-PAM compared to QVS BPSK and 4-PAM. A siginificant

advantage of RVS over QVS demonstrated by Fig. 6.5 is system tunability. Wider

sum rate peaks in Fig. 6.5 represent better system tunability: high mean sum rate is

achievable over a wider range of ε. We define the system tunability as the range of

ε that allows the system to achieve E{SR} ≥ 4 bits/channel use (50% of theoretical



6.3. MEAN SUM RATE 84

maximum in the scenarios investigated). Comparing the QVS and RVS mean sum

rates for BPSK and 4-PAM in Fig. 6.5, the QVS models have a system tunability of

0.08 and 0.04 for BPSK and 4-PAM respectively; whereas RVS models have a system

tunability of 0.13 and 0.07 for BPSK and 4-PAM respectively. We also note that

4-PAM QVS is only able to achieve a peak mean sum rate of 6.51 bits/channel use,

compared to 7.97 bits/channel use for RVS 4-PAM.

We perform a similar investigation assuming RZFBF in Fig. 6.6. All parameters

are held the same in Fig. 6.6 as Fig. 6.5 with the exception of the beamforming

scheme assumed.
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Figure 6.6: QVS mean sum rate (bits per channel use) given by Eq. (6.9) (left plot)
plotted as a function of εq for RZFBF, N = 16, K = 30, SNR=10dB.
RVS mean sum rate (bits per channel use) given by Eq. (6.9) (right plot)
plotted as a function of εq for WL-RZFBF, N = 16, K = 30, SNR=10dB,
and τ = σ2

Again, we observe superior system tunability for RVS compared to QVS. QVS

achieves a system tunability of 0.09 and 0.07 for BPSK and 4-PAM, respectively,

compared to RVS system tunability of 0.13 and 0.08 for BPSK and 4-PAM, respec-

tively.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The key aspect of this work is the analyses of ε-orthogonal group existence for REO

and QEO groups. The investigation includes both analytic and numerical approaches

to this problem. This analysis is not limited to a specific user selection algorithm,

rather is provides insights into the concepts underpinning many practical user selec-

tion algorithms designed to mitigate interference. In order to put this analysis in

context, a throughput analysis is required. We develop an average-basis throughput

analysis where all the interference powers amongst the group of users are equal, where

the interference power is the maximum tolerable interference for a given user orthog-

onality constraint in the group. This special case is of particular interest for a system

implementing a user selection scheme. Many aspects of the throughput analysis are

not limited by the special uniform interference case investigated in this work and

could be extended.

The throughput analysis presented in this work illustrates how a judicious choice

of modulation, user orthogonality criteria, and beamforming can be made to meet a
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wide range of QoS requirements in future wireless networks. Results illustrate that

by relaxing user orthogonality criteria for amplitude-modulated systems, a higher

probability of finding a large group of users is achieved. Moreover, using widely-linear

beamforming schemes, such a group can achieve concurrent service from a transmitter

with a relatively low number of antennas. Conversely, results illustrate quadrature-

modulated systems, which require more strict user orthogonality criteria relative to

amplitude-modulated systems, have a lower probability of finding a group of the

same size. However, fewer users are needed to achieve comparable spectral efficiency

in the high-order quadrature modulated system compared to the low-order amplitude

modulated system, thus increasing the probability of finding a group. This behaviour

characterizes an application-specific trade-off: systems using high-order quadrature

modulation are well-suited to high-throughput, high-latency QoS applications, while

systems using low-order amplitude modulation are better suited to low-throughput,

low-latency applications.

7.2 Future Work

Further work to generalize and extend the existing work is recommended. Several

useful generalizations of the model include modelling non-uniform interference in the

group, line-of sight propagation, and non-isotropic antennas. The joint beamform-

ing user orthogonality analysis in this work assumes uniform interference amongst

users in the group. Although this is an interesting and useful scenario for system

performance analysis, a non-uniform interference model is more realistic, although

less simplistic. Modelling line-of-sight propagation is also a useful extension of the

work. Incorporating line-of-site propagation into the analysis would not only make
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the model more flexible, it would also allow for better modelling of massive MIMO

systems. Further work is also recommended in addressing challenges specific to mas-

sive MIMO applications as discussed in [45]. Furthermore, the existing work could

also be generalized further by considering non-isotropic antennas.

In addition to the recommended generalizations and extensions, the existing work

could also be applied to the development of new work including improved user selec-

tion algorithms, and inter-cellular interference mitigation algorithms in the wireless

downlink physical layer. A significant portion of the existing work is dedicated to

modelling the interference between users statistically. The statistical analysis could

be used to develop improved user selection algorithms. For example, one could view

the user selection algorithm as an optimal stopping problem: after considering a num-

ber of candidates for the group, the complexity of continuing the search out-weighs

the benefits of continuing. The statistical analysis developed in this work could be

used to quantify this trade-off for both quadrature and amplitude-modulated users.

The existing work focuses on intra-cellular interference mitigation. However, the work

could be applied to inter-cellular interference mitigation in the wireless downlink as

well. For example, in a centralized network with coordination between overlapping

cells, ε-orthogonal user criteria could be used to reduce complexity in inter-cellular

interference mitigation algorithms. Similarly, the existing work could be used to de-

velop an distributed interference mitigation algorithm when there is no coordination

between cells. For example, cost and reward functions could be described in terms of

ε-orthogonality in a distributed reinforcement learning algorithm.
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