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Abstract-This work shows that the full performance per­
mitted by the Rician fading radio channel at a smart antenna 
receiver with imperfect channel state information is achieved with 
maximal-ratio eigencombining (MREC) for much lower complex­
ity (i.e., baseband power consumption) than with conventional 
maximal-ratio combining. Furthermore, it shows that unrealistic 
assumptions about the channel fading (Rayleigh, Rician with 
typical K value) produce not only several-dB performance 
estimation inaccuracies, but also up to 50% processing cost 
estimation inaccuracies. These results are obtained by deriving 
a new average (over the noise and fading) error probability 
expression for MREC, and then averaging it numerically over 
lognormal azimuth spread and K -factor distributions recently 
reported from measurements. A MREC adaptation criterion ear­
lier proposed for Rayleigh fading is generalized to Rician fading 
and demonstrates an exceUent dimension-reduction capability, 
for more power-efficient smart antennas. 

Index Terms-Azimuth spread, Rician fading, eigencombining. 

I. INTRODUCTION 

This paper sets out to compare smart antenna performance 
and numerical complexity (which translates into baseband 
hardware requirements and power consumption) for several 

1) Combining methods [1]: 
• Maximal-ratio eigencombining (MREC) 
• Maximal-ratio combining (MRC) 
• Statistical beamforming (BF), 

2) Channel state information (CSI) estimation methods [2]: 
• Optimum and suboptimum fading gain estimation, 

3) Channel fading and parameter models [3] [4] [5]: 
• Rician fading and Rayleigh fading, 
• Lognormal, correlated azimuth spread (AS) and K­

factor, and nonrandom AS and K. 
This analysis is necessary because, in practice, conventional 

combiners such as MRC and BF do not adjust processing 
requirements to the channel condition. On the other hand, 
MREC (which is a superset of MRC and BF) can process only 
the dominant eigenvectors [1]. Furthermore, CSI estimation 
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is imperfect and consumes significant hardware resources 
and power for MRC in Rayleigh fading [1] [6]. Finally, the 
effect of realistic Rician fading with large (negative) AS - K 
correlation [5] on smart antenna performance and baseband 
processing complexity has not been investigated by others. 

To undertake the analysis we derive a new expression for 
the MREC average error probability (AEP - over noise and 
fading) for imperfect CSI, Rician fading, and any AS and K­
factor values. This expression is then averaged numerically 
over AS and K distributions reported from measurements [5]. 
A criterion for MREC adaptation to actual channel condition 
is also proposed, to minimize the dimension of the channel 
estimation and signal combining problem. 

Throughout this paper, numerical complexity refers to the 
number of multiplications required for combining, estimating 
the fading gains (i.e., the CSI), and estimating the channel 
eigenstructure [1] [7]. Computational complexity translates 
into hardware requirements and power consumption, as shown 
for FPGA-based MREC, MRC, and BF implementations and 
Rayleigh fading in [6]. 

Using the performance and complexity evaluation ap­
proaches described above, we first show, for Rician fading, 
estimated CSI, and random AS and K, that: 1) unlike BF 
and MRC, MREC can yield a channel-driven performance­
complexity trade-off; 2) the MREC decorrelating step simpli­
fies optimum CSI estimation tremendously. These results are 
consistent with our previous results for Rayleigh fading [1]. 
They suggest that we should deploy MREC if we want 'green' 
smart antennas, which achieve the optimum performance 
permitted by the channel for minimum baseband hardware 
requirements and power consumption. 

Secondly, for adaptive MREC, the Rayleigh fading as­
sumption is found to significantly underestimate performance 
and overestimate complexity compared to the measurement­
supported Rician fading model with correlated AS and K. 
On the other hand, Rician fading with K set to typical value 
is found to significantly overestimate performance and un­
derestimate complexity. Then, increasing AS - K correlation 
is shown to yield improving performance indications and no 
significant complexity increase. 

Section II of this paper presents the signal, AS, and K­
factor models. Section III describes MREC, its relationships 
with MRC and BF, as well as adaptive order selection, for 
Rician fading and estimated CSI. Finally, Section IV presents 
numerical results that support our claims. 



II. SIGNAL, CHANNEL, AND NOISE MODELS 

A. Received Signal Model 

A single-antenna mobile station transmits signal through a 
frequency-flat Rician fading channel. At an L-element base­
station antenna array the received signal vector after demod­
ulation, matched-filtering, and symbol-rate sampling is [1] 

y = viEs b h + ii (1) 

where Es is the energy transmitted per symbol, and the 
random transmitted symbol b is drawn from an M-PSK 
constellation with unit amplitude. The channel fading and 
receiver noise vectors, h and ii, are assumed to be mutually 
uncorrelated, circularly-symmetric, complex-valued, random 
Gaussian vectors [3, p. 39], described by h rv Nc(�, Ri:;) 
and ii rv Nc(O, No I). 

The Rician K -factor is the ratio of the powers in the 
deterministic part (i.e., the mean) and the random part of the 
channel vector [3]. Then, the channel vector can be written 
as: 

(2) 

where �n is the 'normalized' deterministic part of h, i.e., 
we assume that its elements have the property Ihd,n il = 1, 

- - ' 

and hrn is the 'normalized' random part of h, i.e., we assume 
that E{lhr,n,iI2} = 1. Then, E{lhiI2} = 1, and the average 
bit-SNR is given by ')'b = logl M -tE{lhiI2} = IOgl M -to 

The deterministic channel gain part is: 
2 

- - /K­E{h} = � = V K+1 hd,n' (3) 

The distribution of the normalized random part is completely 
described by its correlation matrix, R;trD = E{hr,n �n}' 
The covariance matrix of the channel gain vector and the 
correlation matrix of its random part are related as: 

R- = E{ (h- hd) (h- �) H } = _1_ R_ . (4) h K+l hr,D 

We will assume that the (real-valued and non-negative) 
eigenvalues of Rii are ordered as Al � A2 � ... � AL � O. 
The corresponding; orthonormal, eigenvectors are denoted as 
ui, i = 1 : L. The eigendecomposition of R-h is then: r,D 

L 
Rii = uLALuf = '" Ai Ui uf, r,n � i=1 

(5) 

where AL and U L are, respectively, a diagonal and a unitary 
matrix formed with the eigenValues and eigenvectors of R -h • r,n 
B. Statistical Models for AS and K 

Several authors have shown that the measured K -factor is 
lognormally distributed [8, Table II]. For a typical scenario, the 
following K -factor (in dB) model was proposed in [8, Table 
II]: 

KeIB = 7.87'l/J + 8.53; 'l/J rv N(O, 1). (6) 

On the other hand, signal power arrives with azimuth angle 
dispersion that is typically modeled by the Laplacian power 
azimuth spectrum (PAS) [4]. Laplacian PAS is parameterized 
by the mean angle of arrival (AOA), Be, as well as by the 
AS, which is (approximately) the root second central moment 
of the PAS. The correlation between two antenna elements 
can then be computed. For the numerical results shown later 
a scenario described in [4, Table I] is considered whereby 
the base-station AS, measured in degrees, is described by 
lognormal distribution [4, Eqn. (9)] 

AS = 10°.47x+o.74., Af(O 1) X rv JV , • (7) 

AS samples generated with (7) then yield Pr(1 ° < AS < 
20°) � 0.8 [1], which implies preponderantly-high (over 
0.5) antenna correlation values for compact antenna arrays 
(with unitary normalized inter-element distance, dn = 1, i.e., 
physical distance equals half of the carrier wavelength) [1, Fig. 
1]. Note that the AS also experiences very slow fluctuations 
(compared to the Doppler-induced channel gain fluctuation) 
with the distance traveled by the mobile station [4, Eqn. (14)]. 

Recent channel measurements and modeling found sig­
nificant (negative) AS and K correlation. For example, the 
correlation p between 'l/J and X has been found to be in the 
range [-0.1, -0.6] in [5, Table 4-5, p. 47]. Therefore, next, 
we derive an AEP expression for the MREC that we can then 
numerically average over the above AS and K distributions. 

III. MREC, MRC, AND BF 

A. MREC for Perfect CSI 

We summarize below from [1, Section III.A.l] the steps of 
maximal-ratio eigencombining (MREC) of order N = 1 : L, 
denoted hereafter as MREC N: 

(1) The Lx N matrix U N � [UI U2 ... UN] transforms the 
signal vector from (1) into 

Y = viEsbh+n, 
where 

£::"uH-Y= NY' £::,. H­h=UN h, £::"uH-n= Nn. 

(8) 

(9) 

This is the well-known Karhunen-Loeve Transform 
(KLT). The elements of the N-dimensional vectors Y 
and h are hereafter referred to as eigenbranches and 
eigengains, respectively. Our assumptions about the fad­
ing and noise imply that: 

• h rv Nc(hd, K�I AN), where � � U�� = 
8UHi:. K+I N £'d,n 

• e eigengains are independent 
• n rv Nc(O, No IN)' 

(2) For perfectly known channel gains (i.e., channel state 
information - CSI) and eigenstructure, the trans­
formed signal vector is linearly combined, based on the 
maximal-ratio combining criterion [9], with 

WMREC = h. (10) 
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The post-KLT channel vector can be written as: 

h = J K � 1 
�n + J K � 1 

hr,n, (11) 

l:!. -
where hr,n = U� hr,n' Then, the post-KLT K-factor on the ith 
eigenbranch, i.e., the ratio of the powers in the deterministic 
and the random parts, is: 

� Ih _ 12 1 "h- 12 K+l d,n,� __ K 
Ui d,n Ki = ---,;:..:...!..�-�� 

K�l E{lhr,n,iI2} .Ai 
B. Exact MREC for Estimated CSI 

(12) 

The analysis below is a generalization to Rician fading 
and estimated CSI of the analysis for Rayleigh fading and 
estimated CSI from [1, Section 111.0], and of the analysis 
for Rician fading and perfect CSI from [10, Section III.A]. 
Hereafter, we assume that CSI is obtained based on pilot­
symbol-aided modulation (PSAM) at the transmitter and pi­
lot sample interpolation at the receiver. The SINC PSAM 
(data-independent, low-complexity, suboptimum) and MMSE 
PSAM (data-dependent, high-complexity, optimum) estima­
tion methods are described for Rayleigh fading in [2]. 

I) Optimum Eigencombining - Exact MREC: We describe 
next a lesser-known, yet optimum, combining method that is 
difficult to deploy and analyze when deployed pre-KLT, but 
not so post-KLT. 

Recall first that we assume that the deterministic part of 
the channel eigengain, �, is perfectly known. The eigengain 
vector, h, and its estimate, g, are jointly Gaussian for MMSE 
and SINC PSAM estimation. Let us denote the mean (i.e., 
deterministic part) of g as �. Then, the distribution of 
the eigengain vector, h, conditioned on its estimate, g, is 
Nc(m, Re), where [1, Section III.D]: 

m hd + RhgR;-l (g -�), 
Rh - Rhg R;l Rg h. 

(13) 

(14) 

Then, we can decompose the channel eigengain vector as 

h = m + e, e rv Nc (0, Re) , 

and the post-KLT signal vector from (8) as 

(15) 

y = VEsbm+1I rvNc(VEsbm,Rv) (16) 
where II � VE"s b e + n compounds the channel estimation 
impairments and noise, and RII = Es Re + No IN. 

Eigenbranch independence makes the elements of g in­
dependent, and the covariance matrices from (13) and (14) 
diagonal. Then, the elements of the 'virtual' channel vector 
m from (13) and of the covariance matrix RII of the 'virtual' 
noise vector II from (16) can be written, respectively, as: 
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where ah;,gi � E{(hi - hd,i) (9i - 9d,i)*} '  a;i � E{19i -
9d i 12} , and /.Li � Uh; ,9i = J K t1 Uhi ,9i. The required , / (72 (72 A� u 9i V hi 9i 
correlations can be computed for SINC and MMSE PSAM 
from [2, Tables 2, 3] with .Ai replaced by .Ad(K + 1), which 
is because the work in [2] is for Rayleigh fading. 

For (16) the optimum weight vector is 

R-1 We,N = II m. (19) 

Then, the symbol-detection SNR can readily be shown to be 
N 

Imil2 
N 

'Y = Es � (Rv)i,i 
= � 'Yi, (20) 

i.e., the sum of the individual SNRs, which are given by 

Es Imil2 'Yi = 
(RII )i,i 

with average: 

t .Ai ( 1 - l/.LiI2) + K + 1 ' 
i = 1: N. (22) 

Due to property (20), this optimum combining method has 
been denoted exact MREC [1]. From (19), the exact-MREC 
weights are: 

mi [we,Nli = (Rv)i,i' 
i = 1: N. 

They require more information and computation than the 
(more commonly used) approximate MREC weights, which 
are simply [wa,Nli = 9i, i = 1 : N [1]. However, it is 
shown below that exact-MREC can be analyzed easily (unlike 
approximate MREC [1]). 

2) Exact-MREC Performance Analysis: For the CSI­
estimation-error-aware post-KLT signal vector model 
from (16) the 'virtual' channel eigengain vector m is 
described by (17). Then, the 'virtual' K-factor for the ith 
eigenbranch, i.e., the ratio of the powers in the deterministic 
and the random parts of mi, can be written as follows: 

Ky,i = K Ihd,n,iI2 _ 1 __ K- _ 1_ (23) 
.Ai l/.Lil2 - � l/.LiI2· 

Then, the eigenbranch SNRs from (21) are independent 
random variables with noncentral X2 distributions described 
by the probability density function [9, Eqn. (2.16), p. 21], and 
moment generating function [9, Eqn. (2.17), p. 21] 

K -+1 Kv,iSri 
M'Y;(s) = E{eS'Yi} = y,� e(Kv,;+l) sri (24) (Ky,i + 1) - Sri 

. 

The exact-MREC symbol-detection SNR, i.e., 'Y from (20), 
is the sum of the individual SNRs, which are statistically 
independent. Then, we can express the symbol AEP based 
on the method from [9, Chapter 9]. For MRECN and M-PSK 
transmitted signals, the symbol error probability conditioned 
on 'Y can be written as [9, Eqn. 8.22] 

Pe N("() = � r¥7r exp {-'Y ��K } d¢, (25) 
, 7r 10 sm ¢ 



where !lPSK = sin 2 7r / M. Then, the AEP is 

Pe,N � E{Pe,N(-r)} = .!. rMiil7r 
M"{ (- ��K ) d</J, (26) 

7r 10 sm </J 
where M"{(s) is the MGF of "f .  Using (20) and the indepen­
dence of "fi' i = 1 : N, (26) becomes 

M-l N 
Pe,N = � rr;r7r 

rr M"{i (- :P�K ) d</J. 10 i=1 sm </J 
(27) 

This equation and the expression shown above for M . (s) 
yield the symbol-AEP expression for exact MRECN as 

"{. 

K . -'1i'SIL r . V,'l. � 'l. 

P. N _.!. rMiil7r 
rr
N (Ky,i + 1) e - ( Kv,i+l)+� ri 

e, -
7r 10 . (K . + 1) + ?PSK r. d</J, (28) 

o �=I y,� SiiiT¢ � 
which depends on modulation constellation size, M, MREC 
order, N, antenna correlation (i.e., also AS), K-factor, as well 
as estimation method and its parameters. Therefore, (28) suits 
well our goal of evaluating the effect on performance of the 
AS - K correlation. 

3) Relation with BF and MRC: For N = 1, exact MREC 
becomes exact BF, and then (28) is the BF AEP expression. 
For N = L, exact MREC (i.e., full-MREC) is performance­
equivalent to exact MRC because the symbol-detection SNRs 
are equal. Thus, (28) for full-MREC describes exact-MRC 
performance. Note that exact-MRC implementation is cum­
bersome and analysis can be difficult through means other 
than the equivalence with exact MREC. 

4) Relation with Ideal Eigencombining: Perfect CSI im-
plies: 9i = hi, hd i  = gd i, O'h· g. = O'g

2 = O'h2 = K
I '. 

, , H 1. i i +1 .1\", 
/-Li = 1, mi = hi, Ky,i = Ki, (R")i i = No, [we N]' = hi, E 2 E ' . .  ' � . "fi = Fo Ihil , and ri = N- Ai. Substltutmg these speCIal-
izes (28) as the MREC AEP for perfect CSI [10, Eqn. (15)]. 

C. Optimum Order Selection for MREC 

For Rayleigh fading and the signal model from (8) we 
previously adapted the MREC order to bit-SNR and AS 
(assuming eigenvalues ordered decreasingly) using the bias­
variance tradeoff criterion (BVTC) from [1, Section IV.A]. It 
balances the loss incurred by removing the weakest (L - N) 
intended-signal contribution (i.e., bias) against the residual­
noise contribution (i.e., variance). For Rayleigh fading, we 
found that BVTC-based MREC can attain MRC-like perfor­
mance and can reduce complexity compared to MRC [1]. 

For Rician fading and the signal model from (8) the BVTC 
expression from [1, Eqn. (31)] becomes: 

min [Es � (K Ihd,n,i I2 +�) + N, N] N=I:L . � K + 1 K + 1 0 
�=N+l [ L ] . Ki +1 = mm Es '""' --- Ai + No N N=l:L � K+l i=N+l 

(29) 

Since Ki, defined in (12), is determined by Ai as well as by the 
angle between the channel eigenvector Ui and the deterministic 

part of the channel vector hd, BVTC for Rician fading requires 
reordering decreasingly the terms Ai (Ki + 1) , i = 1 : L, 
before (29) is employed to compute the MREC order, N. Note 
that the BVTC from (29) is independent of the CSI estimation 
procedure and parameters. Future work will consider a CSI­
dependent BVTC implementation. 

IV. NUMERICAL RESULTS 

A. SIMO Results from AEP Expression 

The following parameter settings have been used: QPSK 
transmitted signal, uniform linear array with L = 5 elements 
and normalized interelement distance dn = 1, mean AOA 
Be = 0, which corresponds to the direction perpendicular to the 
antenna array, Laplacian PAS with lognormally-distributed AS 
described by (7), and lognormally-distributed K -factor as de­
scribed in (6) - unless specified otherwise. SINC and MMSE 
PSAM have been used for CSI estimation for normalized 
Doppler speed 0.01, slot length 7, and interpolator size 11 [2]. 
The results described next have been obtained by the following 
procedure: 1) Generate a batch of 10 000 independent AS 
samples from the lognormal distribution (7); its mean and 
standard deviation are 9.75° and 13.45°, respectively, and 
Prob(AS < 20°) = 0.84; 2) Generate a batch of 10 000 
independent K samples from the lognormal distribution (6) 
so that AS and K have the required correlation, as discussed 
in Section II-B; 3) Compute the AEP using (28) for each (AS, 
K) sample; 4) Compute the mean AEP by averaging over AS 
and K. Note, however, that for some of the results described 
hereafter AS or K or both may also be fixed to their average 
values or other values deemed interesting. 

Fig. 1 shows for MMSE PSAM that at mean-AEP 10-3 
MRC outperforms BVTC MREC by only about 0.4 dB, bu� 
is 10 times more complex. The decorrelating step of MREC 
allows independent estimation of each eigengain component, 
which dramatically reduces complexity vs. MRC, for MMSE 
PSAM. Interestingly, we found that even full-MREC is about 
3 times less complex than MRC. Furthermore, at low bit­
SNR, BVTC further reduces MREC complexity by reducing 
the dimension of the estimation and combining problems. On 
the other hand, BVTC MREC outperforms BF by nearly 7 dB, 
and doubles the computational complexity vs. the latter. 

Fig. 2 shows in the top subplot that, for BVTC MREC, 
MMSE PSAM outperforms SINC PSAM by almost 2 dB 
at 10-3 mean-AEp, although they have nearly the same 
complexity [1, Table II]. The bottom subplot indicates that 
MREC reduces complexity significantly only at low bit-SNR 
for SINC PSAM because BVTC reduces (estimation and 
combining) problem dimension. For SINC PSAM, MREC 
does not simplify eigengain estimation. For Rayleigh fading, 
similar conclusions have been drawn also by simulation in [7]. 

Thus, BVTC MREC not only reduces the problem dimen­
sion but, more importantly, it can make the great performance 
of MMSE PSAM affordable. Hereafter, all shown performance 
results are for BVTC MREC with MMSE PSAM. 

Fig. 3 shows in the top subplot that the performance for 
Rayleigh fading is poor compared to all the Rician fading 
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MMSEPSAM 

-+- MREC, Rayleigh 
-4 -MREC, p=O - I> -MREC. p� -0.3 
-4 -MREC. p� -0 .• 

-5 -V-MREC,p=-1 � 10 -MREC,K=8.53dB 

I · " 
,£'j 0.1 
---
Q 

'E 0 21 
gj 0.05 '---------''-----'------'------'------'------'------'------'------'----------=' 
::;; 0 10 

1b [dB] 

Fig. I. Top: average (over noise, fading, AS and K) error probability vs. bit­
SNR, for BF, BVTC MREC and MRC, Rician fading, MMSE PSAM, and 
p = -0.6; Bottom: BF vs. MREC and MREC vs. MRC relative complexities. 

10' r-1_---,_---r_--.--_,M_�_'IS_ETP_S_A_�r1 _--,-_,-_,------,,--, 

Fig. 2. Top: average (over noise, fading, AS and K) error probability vs. bit­
SNR, for BVTC MREC, Rician fading with p = -0.6, SINC and MMSE 
PSAM; Bottom: MREC vs. MRC relative complexity. 

cases. On the other hand, for Rician fading with random 
K, indicated performance improves with increasing AS - K 
correlation magnitude, Ipl. For example, at mean-AEP level 
10-3, Rayleigh fading requires I'b = 18.75 dB, whereas 
Rician fading with P = 0, -0.3, -0.6 requires 15.6 dB, 
14.6 dB, and 13.5 dB, respectively. Finally, Rician fading 
with K = 8.53 dB (the average of the measured distribution) 
requires only 10.82 dB. 

Fig. 3 shows in the bottom subplot that the unrealistic 
Rayleigh fading assumption overestimates BVTC MREC com­
plexity by about 46% vs. Rician fading with P = - 0.6, at 
/'b = 10 dB. On the other hand, for Rician fading, increasing 
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Rice, p = -0.6 

Fig. 3. Top: average (over noise, fading, AS and - unless specified otherwise 
- K) error probability vs. bit-SNR, for BVTC MREC, for Rayleigh and 
Rician fading, MMSE PSAM, and several AS - K correlation values; Bottom: 
MREC vs. MRC relative complexity. The top subplot legend also applies to 
the bottom subplot. 

Ipi increases BVTC MREC complexity somewhat - by about 
8% and 16% for p = -0.3 and p = - 0.6, respectively, 
compared to p = 0, at /'b = 10 dB - because the MREC 
order output by the BVTC increases. Finally, the unrealistic 
assumption that K is set to the average from measurements 
underestimates BVTC MREC complexity by more than 30%, 
at I'b = 10 dB compared to the realistic case of random K 
with p = - 0.6. 

Let us now explore further the reason behind the MREC 
performance improvement with increasing Ipl. Fig. 4 shows 
in the top subplot that the AEP performance (averaging over 
noise and fading only) is high for low AS and low K 
values. Thus, the (low-AS, low-K) samples determine average 
performance for random AS and K, which makes the relative 
number of such samples important. Histograms of (AS, K) 
shown in Fig. 5 indicate that increasing Ipi yields relatively 
fewer (low-AS, low-K) samples. This means relatively fewer 
poor-performance-inducing samples and, therefore, improved 
average (over AS and K) performance, as shown in the top 
subplot of Fig. 3. 

Fig. 4 shows in the bottom subplot that, given AS and K, 
the BVTC order increases with the bit-SNR, which increases 
the complexity but also helps MREC achieve near-MRC 
performance. On the other hand, given K, the BVTC order 
tends to increase with increasing AS, which is because the 
intended-signal energy is spread over an increasing number of 
eigenvectors. The top subplot shows a corresponding perfor­
mance improvement, which is due to diversity gain. 

Finally, the top subplot in Fig. 4 indicates that, given the AS, 
BVTC MREC performance improves with increasing K. This 
has been confirmed by other numerical results (not shown here 
due to space limitations). While MREC performance improves 
with increasing K, its complexity decreases. We found that K 



10 12 
Ib [dBj 

14 16 18 20 

Fig. 4. Top: average (over noise and fading only) error probability vs. bit­
SNR, for BYTC MREC, Rician fading, MMSE PSAM, and various AS and 
K values (low or equal to the averages of the distributions described in 
Section II-B; Bottom: MREC order output by the BYTe. 
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Fig. 5. Histograms of (AS, K) obtained from 106 samples, for p = 
0, -0.3, -0.6, -1. Increasing correlation magnitude yields relatively fewer 
(low-AS, low-K) samples. 

increasing from 0 dB to 10 dB would reduce MREC mean­
AEP 30 times and MREC complexity by half. On the other 
hand, the MRC numerical complexity is high and independent 
of K (as well as AS and bit-SNR). 

V. CONCLUSIONS 

The results obtained above with the newly-derived AEP 
expression prove that MREC adapted with the proposed cri­
terion to the fading type, AS, K-factor, and SNR can achieve 
optimum, MRC-like, performance for BF-like complexity 
(lower than MRC). Computational complexity reductions, i.e., 
baseband hardware and power savings, are especially attractive 
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(ten-fold) for optimum CSI estimation. Thus, MREC and opti­
mum CSI estimation should be deployed at smart antennas to 
achieve the full performance permitted by channel conditions 
for minimum baseband hardware and power cost. 

Furthermore, we have found that the fading type and chan­
nel parameter models employed in theory or simulation can 
dramatically impact performance indications and complexity 
assessments. Recently-validated models of Rician fading with 
correlated AS and K should be used for performance and 
complexity evaluations. Assuming Rayleigh fading instead can 
underestimate performance by about 5 dB at 10-3 mean­
AEP, and can double the indicated complexity requirements. 
Assuming Rician fading and typical K value can overestimate 
performance by nearly 2 dB and can underestimate processing 
requirements by 30%. Finally, assuming that AS and K are 
uncorrelated can underestimate achievable performance by 
2 dB but does not affect significantly complexity assessments. 

MREC proves to be a 'greener' smart antenna technique 
than BF and MRC because: 1) MREC can significantly reduce 
complexity for the optimum CSI estimation approach, and 
2) MREC can reduce (estimation and combining) problem 
dimension by adapting to the actual fading parameters (type, 
AS, K, bit-SNR, etc.). 
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