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ABSTRACT- This paper studies the estimation of rigid-
body motion from twe 3-D point sets with and without
correspondences. In Part I, by utilizing properties of
Fourier transformation, a frequency-domain approach
for determining the motion withoutl point correspon-
dences is presented. In the aigorithm, the problem of
estimating the translation is first separated by subtract-
ing the coordinales of the centroids from. the 3-D point
coordinates in the point sets. The rotation parameters
are estimaled by correlating the Fourler transforms of
two functions defined on the two sets of the 3-D points.
In Part II, with point correspondence given, an algorithm
for finding the least-squares solution 1o the motion
parameters is presented. First, we prove that the least-
squares solution is such that the centroids of the two
poini sets coincide. The determination of rotation and
‘translation can therefore be decoupled. An iterative pro-
cedure for obtaining the rotation parameters is then
described.

INTRODUCTION

The estimation of 3-D motion parameters is an
important problem in motion analysis. It can be useful
in many applications such as scene analysis, motion
prediction and trajectory planning. This paper presents
motion estimation from 3-D point sets with and without
point correspondences. The paper contains two parts,
Part I, "A frequency-domain aigorithm for determining
motion of a rigid object from range data without
correspondences,” was supported in part by the National
Science Foundation under Grants ENG-84-51484 and
ECS-83-19509, in part by Motorola Inc., and in part by
Hughes Aircrafi Co. Part II, "Least-squares estimation of
motion parameters from 3-D point correspondences,” was
supported in part by the National Science Foundation
under Grant DCR-84-15325, and in part by the Battelle
Columbus Laboratories under the Scientific Service Pro-
gram Contract No. DAAG29-81-D-0100.

PART 1

A FREQUENCY-DOMAIN ALGORITHM FOR DETERMINING MOTION OF A
RIGID OBJECT FROM RANGE DATA WITHOUT CORRESPONDENCES

Zse-Cherng Lin, Hua Lee and Thomas S. Huang

L. INTRODUCTION

The estimation of three-dimensional motion param-
eters of a rigid body is an {mportant problem in motion
analysis. 1t can be useful in many applications such as
scene analysis, motion prediction and trajectory plan-
ning. In general, to soive the problem requires the maich-
ing of two- or three- dimensionaj data of feature points
on the object at two time instances. After the matching
of corresponding points has been accomplished, the
motion parameters can be estimated by solving the equa-
tions which govern the corresponding points at these 1wo
time instances [1-6].

The motion parameters of a rigid body can be
represented by a rotation around an axis passing through
the origin of the coordinate system, followed by a trans-
lation. In general, the three-dimensional motion parame-
iers are uniquely determined by the range dala of three
asymmeltrical feature points on the object. When the
data contain noise, the correspondences of feature points
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at two time instances are difficult to determine. The
motion parameiers estimated Trom three asymmetrical
feature points may not be accurate. In this paper, the
problem of estimating the thiee-dimensional motion
parameters {rom range data without point correspon-
dences is investigated. It is assumed that the 3-D coordi-
nates of a set of feature poinis on an object at two time
instances have been obtained. However, point correspon-
dences between the two time instances are not esta-
blished. We present a systematic algorithm to find the
motion parameters. Two functions are defined on the 3-D
ceordinates of the two sets of feature points. The motion
estimation is based on the Fourier transforms of the two
functions. The principle thal a function and its Fourier
transform must experience the same rotation is utilized.
Since the computation of the Fourier transform does not
reguire the point correspondences, the motion parameters
can be determined without ki:owing the correspondences.

In Section 2, the theoretical background of the algo-
rithm Is described. The probiem of estimating the motion
parameters is formulated. The determination of the
iranslation parameter is separated first by subtracting
the coordinates of the centroid from the 3-D coordinates
of the feature points in each set of data. Two funciions




are defined. The effect of the object rotation on the
Fourier transforms of the functions is discussed. Section
3 establishes a cost functien for the search of the rota-
tion axis by using the fact that the axis is stationary in
the domain of the Fourier transform during the rotation.
In Section 4, the estimation of the rotation angle based on
the correlation of the values of the two Fourier
transforms on a circle is presented. A cost function
based on the correlation is derived. Some simulation
resuits and practical aspects in the realization of the
algorithm are discussed in Section 3.

1. THEORETICAL BACKGROQUND

Assume that the 3-D coordinates of some feature
peints on a rigid object at two time instances are given. If
there is no noise, the two point sets can be related by

Py =Rpy,; +T, i=1,2,...N, (1)
where p;; and p.; represent the corresponding points in
the two range-data sets before and after the motion, T is

the translation vector and R js the rotation matrix. The
elements of the rotation matrix can be shown as

R= (2)
ni+{l1—nf)cos® nyr1—cos@l+n 3sind »yn 3(1=cosd)—n 5sind
rya(l—cosf)—ngsing  nf+(1—nfdcosd nang{l—cosB)+nsind |,

nyn 3l 1—cos8 }+n osind ngn (1—cos@)—nsinb  nf +(i—n{ deosd

where n,, n; and nj are the directional cosines of the
rotation axis, and 8 is the angle of rotation.

Because the two centroids of the points in the two
data sets are also governed by the same rotation matrix
and translation vector, the following relation must hold:

| N 1 &
_— ., = RO + T, 3
nglp-k ¢ nglpm ) (3)
or
T=1l7% RCL T ) (a)
._szlplk _ka=1pm -
If we define
12
91 =P — 'N‘kélplk (5)
and
1 &
Q2i = Pai— v Z Px > (6]
k=1

Eq. (1) can be rewritten as
a.; =Rqy; . i=1,2,...N. (7)

Note that in calculating the centroids, ao point
correspondence is required. The problem of motion esii-
mation becomes frst finding a rotation matrix R that
satishes Eq. (7) and then using Eq. {4) 1o determine the
translation vector T. Existing techniques require that the
point correspondences be given or determined. Then ihree
asymmelrical poinis can be used to solve Eq. (7} [6].

Many algorithms have been discussed for estimating
the three-dimensional motion from range data in the
literature [6LI7]. In the following, the principle of a new
algorithm that utilizes the property of the Fourier
Transformation to find the rotation parameters will be

presented. The advantage of this algorithm is that point
correspondences are not needed.

We define two functions g,(q) and g.{q) on the
new coordinates ¢,; and ¢, of the feature points as fol-
lows:

¥ - _
g2iq)= ¥ 8(gq—qy;) (8)
i#=1
and
N
gz(q)= 7, 8(q—qy ). (9
=1

where 8(q) is a Dirac delta function. The Fourier
transforms of g,(q}and g,{(q) can be expressed as

G,(f)= f ggdexp(—j27t7 gl d q

N
= ¥ exp(—j2=tTq,,), (10)
i=1
and
N
Gy{f)= T exp{—j 27t q, ). (11}

i=1
in which t7 q shows the inner product of the two vectors
f and q. By substituting Eq. (7) into Eq. (11), it follows
that

N AN
GAf)=F expl—j27tTq, ) =T exp
=1

i=1

—7 27t (Rqy; )
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=3 exp{——j 2a(RT 1 q, | =G ,(RT1). (12)
=1

From Eq. (12), it is seen that because q;; and gs,
are reiated by the rotation matrix R, the Fourier
transforms G (f) and G,{{f) are also related by R.
Therefore, the estimation of the rotation matrix can be
resoived by finding a matrix R that satisfies Eq. (12).
This implies that the rotlation matrix can be found by
correlating the values of the two Fourier transforms.
Since the computations of the two transforms do not
require the point correspondences, the correlation can
also be determined without the point correspondences.
However, it is necessary 1o have a systematic procedure
such that the corretation can be computed efficiently and
accurately. In principle, it requires exhausiive search
through all possible rotalion matrices to determine the
rotation parameters by direct correlation of the two
Fourier transforms. A more efficient approach would be
to find the rotation axis first and then to determine the
rotation angle. This is aiso an advantage of correlating
the Fourier transforms G, and G, instead of g, and g,.
In the next section. we will present a systematic
approach for finding the rotation axis.

[Ii. DETERMINATION OF THE ROTATION AXIS

The values of the Fourter transform along the rota-
tion axis are not changed because it is stationary during
the rotation. This property can be used to search for the
axis. From Eqg, (12), it can be seen that the values of
G(f) and G,{f) along the rotation axis are identical
because the values £ and R are equal along the axis.
Hence, the rotation axis can be determined by correlating




the values of G ,(f) and G ,(f) along possible axes. For
this purpose, we define three functions G, (a.b.c),
Gla,b.c) and Gayla b c) of the three variables a, b
and ¢ as follows:

A
Gylab.e)= [ GAOG) (Flar (13)
—A f=r|&
A
Gulabc)= [ G£)G;(E)r (14)
: —A f=rib
and
.-
Gilabe)= [ GG (E)r (15}
—A f=r|b

<

where c =V 1—a?—b? and A is a constant which has to be
chosen properly and will be discussed in a later section.
Note that ¢, & and ¢ represent the directional cosines of
the axis to be determined. The cost function for deter-
mining the directional cosines of the rotation axis can
then be defined as

Gplabe)
Gplabc)Gayla b=

1t is clear that when ¢, & and ¢ are the exact directional
cosines of the rotation axis, the cost function C; has
value one because of G, labc) = Gpladbe) =
Gila b c). In general, the correlation has value less
than cne. By substituting the definition of G,(f) and
G 5(f) into Egs. (13}, (14) and (15), the integrations can
be performed and they can be simplified as follows:

Cillabe)= - (16)
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Where X,., , ¥n, and z,, are the 3-D coordinates of q,,, .
Since Egs. (17). (18) and (19) all have simple representa-
tions, the rotation axis can be found by an efficient search
procedure based on Eg. (16). Although it may seem 1o
have three variables to be determined, the variables must
satisfy the refation a?+&%+c?=] and one of the variables
is nol necessary in the search.

IV. ESTIMATING THE ROTATION ANGLE

From the derivation shown in Section 2, it is clear
that if " we evaluate the values of the two Fourier
transforms, we will see that G,(f) is identical to G ,(f)
rotated by R. This suggests that if the values of G,(f)
are evaluated on a sphere, after the rotation the values
become those of G ,(f) on the same sphere. Furthermore,
it follows that if we evaluate the values of G,(f) and
G ,(f) on the circle which is the intersection of the sphere
and a plane passing through the origin and perpendicular
to the rotation axis, G,(f} should be a circular shifted
version of G ((f). Because the rotation axis can be deter-
mined by the approach described in the previous section,
in this section we will present a systematic procedure for
determining the rotation angle.

Since the rotation matrix can be specified by three
parameters ny, n, and 6 as described in Eq. (2), in the
following we will include the parameters 10 be deter-
mined in the rotation matrix R(n,.n, 0 ). For simpli-
city, the circle noted in the previous paragraph js
assumed to have a radius B, then the variable on this
circle in the transformed domain can be expressed as

n.B
:;n.12+n22
—-n B
f= =R(r,. n, ¢} . (20
J{i Ryt m )

0

where the angle ¢ becomes the variable and 0 < & < 27,
The values of G,{f} and G,{f) on the circle can be
rewritten as functions of n,, n, and ¢ as follows:

Gl(f)zcl(nl,nzg‘b) (21)
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where x;, ¥; and z;; are the three coordinates of the
veclor gy, . From Eg. (12), if the actual rotation matrix
is R{n |,n 5,8, the values of G (11,1 5,¢) on the circle can
also be expressed in terms of vaiues of G ;(n 15,0} as

G 3(1'? 141 2.@) =G Z{f) =G ](RT (n 11 z.e)f)

noB -n B

1
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ERE

=

exp{—j2mr :
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=G (n.n50-0). (233

Eq. {23) proves that the values of G,(f) and G ,(f)
on the circle are the circular shifted version of each other
if -the rotation axis has directional cosines 74, n, and

V1-n{-n3 . We can define a cost function to be max-




imized for the search procedure as

2r
J6nyn )G (nynapty) d &
Caly)= " = (24)

2 27
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for 0<y<2#%. From Eq. (24), it can be easily seen that
Cily) €C(0)=1. ' (25)

Therefore, a systematic search based on this cost func-
tion can be designed. The values of G,(#n.1.®) and
G 5(n 1,1 5,¢) are computed and the cost function C 5{y} is
evaluated. When the cost function reaches its maximum,
ihe rotation angle is determined. This process is virtually
a process of computing the correlation of the two Fourier
transforms G (1,1 5,¢) and G4{n ,n,.0). Theoretically,
the maximum value of the cost function should be one if
there is no noise, nt; and n , are correct, and the search
can reach all possible values 7.

From the definition of the cost function in Eq. (24),
one can understand that if the directional cosines n, and
n, are not known in advance, it is still possible to find
the correct rotation parameters by using this cost func-
tion because it has only a global maximum. However, an
exhaustive search has to be done by computing the
values of cost functions C, tor all possibie n,, n, and v.
It is far more efficient if the directional cosines n, and n,
of the rotation axis can be found first by using the
approach described previously.

V. DISCUSSION AND SIMULATION RESULTS

As shown in Section 4, the determination of the
rotation angle is a process of correlation in the Fourier
transforms. The correlation can be accomplished by tak-
ing advantage of the fast Fourier transform. The search
for the rotation axis requires more compuiation because
the cost function € has to be evalvated for all possible
directional cosines ¢ and &. The values ¢ and » need 1o
satisfy aZ+b? € 1. The fast Fourier transform can not
be used. Fortunately, the computations of functions
G Gy and G, are easy because of their simple
representations. Overall, the computation time greatly
depends on the accuracies required in the estimation of
‘the motion parameters. It increases approximately with a
factor of the square of that increased in the levels of the
paramelers,

The two constants A and B have significant effects
on the smoothness of the cost functions C| and C,. To
assure that the global maximum values of the cost func-
tions be reached when the motion paramelers can have
only finite leveis, A and B must be chosen carefully. In
general, the smaller the values of A and B, the smoother
the cost functions C; and C,. When the values of A
and B become bigger, the global maximum values of the
cost funciions become distinctly biggest values in their
nearby region in the domain of the parameters. They
may be missed easily if the numbers of the levels in the
motion parameters are few. When the values of A and
B are smaller, there exist more local maximums which
have values closer 10 the global maximums. Therefore,
A and B must be chosen properly so that the algorithm

provides optimal accuracy. The relations between the
cost functions, the coordinates of the feature points and

the two constanis A and B are under investigation.

Many simulations have been performed with
artificial data to evaluate the efficiency and accuracy of
this algorithm. Two sets of 3-D data of fealure points
on an object were generated. Each set contained 10
feature points. The feature points before the motion were
assumed to be randomiy distributed in the cubic object
region of size 50 on each side and centered at (50, 50, 50).
The object went through a three-dimensional motion.
The two sets of data were used to determine the motion
parameters. Different smallest levels that were availabie
in the search of the motion parameters were tried in the
simulation 10 investigate the performance of this algo-
rithm.

From the results of the simulations, it was found
that about 25 uniformly distributed levels in the direc-
lional cosines n; and n, are required to approximately
locate the rotation axis. If the number of levels were
fewer, an incorrect rotation axis might be determined.
Two sets of typical results are shown in Tables 1 and 2.
The numbers of possible levels in both 7| and n, of the
rotation axis shown in the tables are 50 and 100. Since
the search of the rotation arigle contained oniy one vari-
able and was efficient, 312 levels were assumed for the
purpose of using the FFT subroutine. In the simulation
0.1 is used for the values of both A and B.

Table 1 shows the results of the case in which the
rotation parameters are 1£n,=0.32, n,=-0.42 and
#=61.171875°, and the translation parameter is (54, 63.
47). When 100 uniformly distributed levels were avail-
able for n, and n, the parameters could be found
without error. If the number of available levels was 50,
only approximate values close to the exact parameters
were estimated. The accuracy of the rotation angie and
the translation parameter were also affected. When the
data were quantlized 1o integer numbers, guantization
noises were included in the simulation. The results are
also shown in the table. It can be seen that the estima-
iion is not as accurate as without quantization noises. In
Table 2, we show the case in which ali parameiers were
different from those levels available for the search. The
parameters are n,=0.33, n,=-0.41, 8=61.0¢ and T=( 54,
63, 47). Although the estimated values were not com-
pletely accurate, they were very close to the true values.
In both Tables 1 and 2, {a) shows the true motion
parameters. The resuits of 50 levels in n, and n, with
dala not quantized and quantized to integers are shown
in (b) and {c¢) respectively. The results of 100 levels in
n; and n, with data not quantized and quantized to
integers are shown in (d) and {e) respectively.

l Estimation of Motion Parameters
Object Size: 50°,  Object Center: (50, 50, 50)

: EY n, LB T Ay T Ay ¢ Az
(@) 11032 | 042 | 61.17 | 540 | 63.0 | 47.0 |
- (b) 1032 [ 044  61.17 | 53.87 | 62.55 | 48.65 |
() 10.32 1 0.40 | 6328 | 54.18 | 65.58 | 46.65 |
(d) 11032 { -0.42 | 61.57 | 540 | 630 470 |
{e} 11032 ; -0.42 | 62.58 | 54.00 | 64.37 1 47.94 |

Table 1.




. Estimation of Motion Parameters
Obiject Size: 50°,  Object Center: (50, 50, 50)

n, n, [ Ax Ay Az
(a) {033 | -0.41 | 61.0 | 540 | 630 | 47.0
{b) || 0.32 | -0.40 | 61.17 | 54.13 | 63.89 | 45.88 |
(c) 1] 0.36 | -0.40 | 58.35 | 54.07 | 58.13 | 45.95
(d) 1 0.32 | -0.42 | 61.17 | 53.97 | 63.55 | 47.52
{e) il 0.34 | -0.40 | 61.88 | 53.94 | 63.41 | 47.18
Table 2.

Recently, we have also developed another new algo-
rithm which does not require an exhaustive search for
determining the motion without point correspondences
{81 The algorithm is fast and accurate in the noise-free
case. However, it is believed that problems of missing
points and very noisy data may cause more inaccuracy in
that algorithm. The frequency domain algorithm deter-
mines the motion parameters by the correlations in the
Fourier transform domain. [t may have the advantage of
averaging Lhe noise effect because every noise component
in the coordinates has its contribution to the values of
the Fourter transform. If the noise contained in the data
is random, it becomes random phase factor in its Fourier
transform domain. Intuitively, it may be canceled out.
The problem of missing poinis may not be serious
because the global maximum of cost functions can still
exist with a smaller values. Nevertheless, the real effects
of the noise and missing points require more careful
theoretical study and computer simulation in the future
research.

VI. CONCLUSION

In this paper, we present a new algorithm for the
motion estimation from 3-D coordinates of the feature
points on a rigid body. The algofithm does not require
the knowiedge of the point correspondences. Properties
of the Fourier transformation is utilized 10 estimate the
motion parameters. The algorithm determines the motion
parameters by computing the correlations in the Fourier
transforms of the functions defined on the coordinates of
the feature points at two time instances. Efficient

approaches for finding the rotation axis and rotation
angle are described. The translation parameter can then
be readily determined. Simulation results with artificial
data are presented. Some practical aspects such as the
finite numbers of levels in the motion parameters and
the noise effect for implementing the algorithm are
briefly addressed.

REFERENCES

1] 1W. Roach and JK. Aggarwai *Determining the
movement of objects from a sequence of images.'
IEFE Trans. on PAMI. Vol. 6, pp. 534-562, Nov.
1980,

[2] T.S. Huang and R.Y. Tsai, "Image sequence analysis:
Motion estimation,” in /mage Sequence Analysis, Ed.
T.S. Huang, Springer-Verlag, 1981.

[3] H.C. Longnet-Higgins, "A computer program for
reconstructing a scene from 1iwo projections,”
Narure, Vol. 293, pp. 133-135, Sept. 1981.

[4] R.Y. Tsai and T.S. Huang, "Uniqueness and estima-
tion of 3-D motion parameters of rigid bodies with
curved surfaces," IFEE Trans. on PAMI, Vol. 6, pp.
13-27, Jan. 1984.

5] S.D. Blostein and T.S. Huang, "Estimating motion
from range data," First Conference on Artificial
Intelligence Application, JEFE Computer Society, pp.
246-250, Dec. 1984.

6] T.5. Huang and S.D. Blostein, "Robust algorithm for
motion estimation based on two sequential stereo
range pairs,” IEEE Conf. on Computer Vision and
Pattern Recognition, pp. 518-323, 1983.

[7] O.D. Faugeras and M. Hebert, A 3-I reconstruction
and positioning algorithm using geometrical match-
ing between primitive surfaces,” Proc. JJCAI-83, the
Eighth International Joint Conference on Artificial
Intelligence, Karlsrhhe, West Germany, August,
1983,

[8] Z. Lin, H. Lee and T.S. Huang, "Finding 3-D point
correspondences in motion estimation,” submitted to

the Eighth Internationai Conference on Pattern
Recognition, 1986.

PART I

LEAST-SQUARES ESTIMATION OF MOTION PARAMETERS
FROM 3-D POINT CORRESPONDENCES

T.5. Huang, 5.D. Blostein and E.A. Margerum

L. INTROBUCTION

In many computer vision applications, notably the
cstimation of motion parameters of a rigid object using
3-T) point correspondences' and the determination of the
relauve atlitude of a rigid object with respect to a refer-
ence’, we encounter the following mathematical prob-
lem. We are given two 3-D point sets p,=Ix.y.z]%
pi=0yzdh i=1.2,... N, (Here, p; and p’; ave con-
sidered as 3x1 column matrices. The superseript t
denotes transposition.} which are reiated by

P = Rp+T4N; ' (1)

where R is a 3%3 rotation matrix, T is a translation vec-
tor (3x1 column matrix), and N; a noise vector. We
want 1o find R and T 10 minimize

N
=X | o' —~(Rp+T3 | (2)

A brute force way of Anding the solution is to
express L2 in terms of the six motion parameters (3 from
T and 3 from R) and carry out the minimization by stan-
dard iterative methods. (We note that the elements of
the rotation matrix R can be expressed in terms of, e.g.,
the 3 Euler angles, or two components of the direction




cosines of the rotation axis plus the angle of rotation.)
However, E2 is a highly nonlinear function of the & unk-
nowns so that standard iterative methods may or may
not converge to the correct solution depending on ‘the ini-

tial guess. In fact, we have tried a Newton-type algo”
rithm and found that it often converges to a point where
the first derivative of £2 with respect to the 6 unknowns
are zero but which is not the global minimum.

In this paper, we describe a two-part algorithm
which involves iteration. However, the iteration pro-
cedure always converges to the correct solution.

IL A CENTROID COINCIDENCE THECREM

We show that the determination of R and T can be
decoupled because of the following

Theorem 1. Let R and T be the least-squares sojution to
Eq. (1), ie., they minimize L2 defined in Eq. (2). Then
the centroids of {p';} and {Rp,+T} coincide.

Proof:  Let

pi= [x"i,y"i.z"i]‘éépi-i-?’ (3)

and
Al X .
p-—.N._'):pi {Centroid of {p;})
=1

N

2 P (Centroid of {p})

Al
P Wi‘—"l

A

N
=5 207 (Centroid of {p~}).
i=1

We restate ihe least-squares problem of Section I as fol-
lows:

Given—{plipi=12 ... N
Find ~ {p"}
lo minimize
= Tl
subject to the rigidity constraints
Il 9"p"; I = Il oi—p; [P for all i and | .

We can attempt to solve this problem using Lagran-
gian multipliers. Let

N N N
F= Z{ fl pi—p"; ”2+'}:: Zlkijf I o im0 1P pi—p; 12}
i= i=1j=
where Ay; = Ay, Differentiating F with respect to X",

F v N
BBT =0=2(x i—xi)+j}:‘_lnij2(x X))

Summing over i=1 to N, we get
N
Z(X"i——x'i) =0
=1

Similarly for the ¥ and the z components. Therefore
p'=p'=Rp+T (4)
QED

This centroid coincidence theorem implies that we
can simplify our original least-squares problem by first
translating the point set {p;} by

A,
Te=p=p

so that at the new position this point set will have a cen—
troid which is coincident with that of {pi}. Then we .
have only R 10 solve for.

Formally, let
A

9=Pi—p

AL

9P p
then

p—Rp+T) = g';+p—Rq,—RP—T = q'i—Rg;

by virtue of Eq. {4).
Thus, Eq. (2) becomes

z

= . lai—Rg; }j2 {5)

1|

We note that in Eq. (3) (and in Eq. (1}} we have
assumed implicitly that the rotation R is around an axis
passing through the origin of our coordinate system. The
translation T there is not the same as Te. In fact, it is
ready shown that

T= p'—ﬁp (6}
III.  FINDING R: PLANAR CASE

The original least-squares problem has been
simplified to finding R to minimize %2 in Eq. (5). A
closed form solution exists for the case where {p;} and
{pit lie on a plane. Without loss of generality, let us
assume that they lie on the x-y plane. Then so do {q;}
and {q}. To simplify notatlions, we write

g =[xyl = [ricosey;,rising, It

9 =[xy ]' = [ocosB, psinB ]t
Then Eq. (5) becomes

N . -
N 7)
P

where ¢ is the angle of rotlation.




Theorem 2. Over 0Ko0<2», I? attains exactly one
local minimum (which is the global minimum) and one
local maximum {which is the global maximum). The
angles ¢ at which £? attains the minimum and the max-
imum satisf'y

N N
Zorsin(B—e) Y {xy—xy;)

tano = 1 =Zd .8
Z oiroost Bia;) Zlxtyy)

=1 i=1
Proof:  The result is readly seen, if one examines
2 2o
8_2__ and %
a0 ac
QED

The procedure of fnding the least-squares solution
& is to first use Eq. (8) to find two values of o, and then
substituie these into Eq. (7) to determine which values
give the minimum.
IV. FINDING R: GENERAL CASE

For the general case, where {q;},1q";} does not lieon a
plane, the resuit of Section IIT can be used to formulate
an iterative procedure for finding the minimum of I? in
Eg. (5).

We decompose the rotation matrix R into 3 succes-
sive rotations around the z-, x-, and y-axis, respectively,
and by angles ¢,¢, and x respectively*:

R =R, (¥R, (#)R{8) (9)
Eg. (3) now becomes

N
2H,0.0) = T || g —RyIR LR, P (10)
i=1

The approach is 1o minimize L2 with respect to one
variable ai a time with the remaining two fixed. This
minimization is a 2-D problem and can be solved by
using theorem 2. We proceed as follows:

{i} Let ,8, be the initial guesses for .8, respec-
tively. Then we find ¥ to minimize Z¥1,¢,,8,). This is
a 2-D problem where the fwo sets of 2-D points are pro-
jections of {q';} and {R,(&,)R,(8,)q;} on the x-z plane.

Call the solution .
(ii) Find & to minimize

N
T, 0,8,) = Z [ Ry (W )a—R (AR, (8,)g; |-
i=1

This is dgain a 2-D problem where the two seis of 2-D
points are projections of {R; (¥ )q;} and {R,(6p)q;} on
the y-z plane.
Call the solution &,.
(iii) Find & to minimize
N
Ty 0) = T || RSy Ry da R, (8)g, ]| 2.
i=1
This is again a 2-D problem where the two set of 2-D

points are projections of {R.'(d, Ry 4 )g) and {g;} on
the x-y plane. ’

Call the solution 6,.

At this stage, we have finished one cycle of itera-
tion, with the resulting solution (y.,,8,).

We repeat steps (i), (ii), and (iii) until some stop-
ping criterion is met, e.g., when L¥(¥5.6,.8,) is less than
some preset  threshold, Then our solution is

(.3.8) = (6,.0,.8, ).

Conditions for which T*(1,¢,0) has one and only
one local minimum, the global minimum, will be briefly
discussed in Sectien VII of this paper. On trying a
Newton-type algorithm in which minimization took
place with respect to the 6 unknown motion parameters,
it was discovered that Z2(yr,$,8) does have several saddle
points. Since at each step our algorithm attains the glo~
bal minimum in 2-D, it will not be trapped at such a
saddle point. In fact, in hundreds of examples we have
tried the algorithm on, it always converges to the
current solution.

V. SUMMARY OF ALGORITHM

To find R and T to minimize £2 in Eg. (2}, we
proceed as follows.

1) calculate the centroids pandp’ of {p} and P
respectively.

2) calculate

3} use the iterative algerithm of Section IV 1o find
(.3.8). Then

R =R (DIR(B)R,(8) .
4) and

T= p'-—ﬁp .

V1. COMPUTER SIMULATION RESULTS

Computer simulations have been carried out on a
VAX 11/780 to test our aigorithm. Two measures of per-
formance were tested. First, the running time of the
algorithm as a function of the number of point
correspondences was determined. Second, the sensitivity
of the algorithm’s rotation parameter estimates to noise
in the point positions was investigated.

In order to measure the computer CPU time used by
the algorithm, six sets of 3-D points {p;} were generated
of sizes 3, 7, 11, 16, 20 and 30 respectively. Each point
was located arbitrarily inside a 6X6x6 cube centered at
the origin. Then {p';} were calculated for each of the six
se's by rotating {p;} by an angle of 75° around an axis
through the origin with direciion cosines (0.6 , 0.7 ,
0.39). No translation was added 10 this motion since it
can be trivially removed at the first step by calcuiating
centroids. Instead, the iterative determination of the
three rotation angles was explored. For ali experiments,
the initial guessses for the rotation angles &, @, and
were taken 10 be zero. Table I shows the running times
for each of the six poinl sets. Beside each time is the




number of iterations taken for the change in two succes-
sive £ values to be less than 0.001. This corresponds to
an accuracy of about 0.5% in the rotation angles. In a
second experiment, Gaussian random noise of mean zero
and standard deviation 0.5 was added to each coordinate
of {p;} and {p"}. The resulting CPU times shown in Table
H are similar io those reported in the first experiment.
For the sake of accuracy, the simulation times appearing
in the two tables were calculated from an average value
of 500 runs. For the noiseless case and the set of 16
points, the succesive values of 8, &, ¥, and L2 for each
iteration are reported in Table HI.

The algorithm’s sensitivity to noise was experimen-
tally determined for the set of 16 points considered in
the previous experiments. Zero mean Gaussian random
noise {¢g =0.5), was added 1o the point set in [QQ0
separate trials of the algorithm. Statistics based on the
resulting rolation angles are listed in Table IV. As shown
the average % error in the motion parameters was about
3.0. For trials with errors three standard deviations
away from this average error, the average % error was
about 10.0. Since the noise was Gaussian, this
corresponds to 99.7% of the trials having relative errors
of less than 10%. Considering that the average perturba-
tion of a point coordinate by the added noise was 11.5%,

the algorithm can be said to be quite robust.

Table [
Time per run {miilisecs). Noiseless Case.
# pts | meec | # iterations
3 226.6 47
7 124.2 14
11 104.58 8
16 95.2 5
20 1133 3
30 207.2 6
Tabie 11

Time per run {ms) with added Zero mean, (g=0.5)
Gaussian Noise added

#pts Msec #iterations
3 126.8 25
7 108.2 12
11 105.2 8
16 94.2 5
20 135.0 6
30 111.0 6
Table 111

Rotation Angles at each Iteration for 16 point,
Noiseless Case.

Iteration ] [ Y x?
0.0000 | 0.0000 [ 0.0000 | 479.3
-0.8080 | -0.6569 | -0.7497 30.46
-1.0681 | -0.5412 | -0.8891 0.9215
-1.1183 | -0.5299 | -0.9122 0.0241
-1.1265 | -0.5284 | -0.9159 0.0606
-1.1279 | -0.5282 | -0.9164 0.0000

oda B O

Table 1V .
Performance Statistics* for Estimated Parameters
(in added N (0,0.5) noise).
1000 trials 8 ) ¥
bias ~0.00416 0.00073 | -0.00001

standard dev 0.0330 0.0245 (0.0344

avg % error 2.348 3.629 2.989
% error, 99.7% of
trials within 8.808 | 13.89 11.16

* for size 16 point set, avg number of iterations = 5
VII. DISCUSSIONS

After the completion of the work reported in this
paper, it was brought to our attention that an algorithm
developed by Faugeras and Hebert! in a different context
{that of matching piecewise - planar surfaces in 3-D
object recognition) can be used as a noniterative method
of finding R io minimize £? of Eq. (3). Their clegant
approach uses a quaternion formulation. A 3-D rotation
can be represented by a unit quaternion. In terms of this
quaternion, il can be shown that the function £2 can be
expressed in a guadratic form. The guaternion that
achieves the minimum value of Z2 is then the eigenvector
of the 4x4 matrix of the quadratic form associated with
the smallest eigenvalue. The minimum value of I? is
simply equal to this smallest eigenvalue. Furthermore,
22 will have a unique, global minimum if the eigen-
values of the 4x4 matrix are distinct. Our experiments
have shown that the 4%4 matrix has repeated eigen-
values where each of the two point sets are collinear. In
such cases, it is clear geometrically that R and T are not
unique.

In the meantime, Professor K.S. Arun® of the
University of Illinois also independently developed a
noniterative method of determining R based on the
singular value decomposition of a 3X3 matrix.

Work is currently underway to compare ihe three
methods (one iterative, two noniterative} with respect 1o
computer time requirements. We hope to be able to
report on the results in the near future.
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