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Abstract

Quickest detection is a class of detection problems whereby the objective is to identify

a change in distribution of an observed sequence of random variables as quickly as

possible. Quickest detection has been applied to a wide range of applications, such

as process monitoring, quality control, and disaster detection. In each of these ap-

plications, the initial state of the observed sequence is generally known. Considering

these applications, there is an abundance of literature considering formulations of

the quickest detection problem where the initial state of the sequence is assumed to

be known. However, in some applications, the assumption of knowledge of the initial

state of the observed sequence is not valid in general. Recently, spectrum sensing, the

process of identifying wireless channel characteristics for the application of cognitive

radio, has been cast as a quickest detection problem. Upon, first observation, the

radio performing spectrum sensing would not know the initial state of the channel,

rendering previous formulations of the quickest detection problem unusable here.

In this thesis, an alternative formulation of the quickest detection problem is

considered where the initial state of the observed sequence is assumed to be unknown.

The problem is formulated as an optimal stopping problem, and a quickest detection

scheme is developed based on Bayesian hypothesis testing and an assumed set of

costs. The proposed sequential change detector tracks the minimum-risk hypotheses
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using a time-recursive algorithm which achieves constant computational complexity.

It is shown analytically and via simulations that (i) the probability of detecting a

change from an incorrect initial distribution asymptotically vanishes over time under

suitable parameter choices, (ii) cost parameter choices trade off the probability of

early detection of a change (false alarm) against the average delay to detection of a

change, and (iii) cost parameter choices determine the certainty with which the initial

distribution of the sequence is identified, trading off the probability of detecting a

change from an incorrect initial distribution with the ability to detect early changes.
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Chapter 1

Introduction

1.1 Motivation

Quickest detection is a class of sequential detection problems whereby the objective

is to identify a change in distribution of a sequence of random variables as soon as

possible. There are many practical applications for quickest detectors, such as pro-

cess monitoring, quality control, and disaster detection, and as such, several variants

of the quickest detection problem have been considered for different applications. A

common theme among each of these variants is that, in each case, the initial state of

the observed sequence is assumed to be known. For many applications, this assump-

tion is valid. An example of such an application would be the detection of wear on

tools and machinery used in a production facility, where the outgoing products are

given quality metric, and it is desired to identify when the tools used in the facility

need maintenance or need to be replaced. Here, it is fairly assumed that the initial

condition of the tools and machinery is new. However, for some applications, this

assumption of knowledge of the initial state is not valid. In this thesis, the quickest

detection problem under the assumption of unknown initial state is addressed.
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An application of interest for quickest detection under unknown initial state is the

problem of spectrum scarcity. The problem of spectrum scarcity has been a popular

topic of study in the field of wireless communications in recent years. Since the

beginning of radio communications in the early 20th century, it has been known that

there is a finite amount of spectrum which is usable for wireless communications, and

since the Radio Act of 1927, spectrum has been regulated. Today, nearly the entirety

of this limited amount of spectrum has already been allocated for one purpose or

another. Several studies have shown that many commercially licensed spectrum bands

are significantly under-utilized [7, 16], while other spectrum bands, such as the TV

white space, remain unused due to technology being rendered obsolete. Meanwhile,

following the popularization of the Internet and the vast number of technologies and

services which rely on it, the overall demand for network access by mobile devices is

steadily increasing [9]. Furthermore, as futuristic scenarios gain traction, such as the

Internet of Things (IoT), a set of technologies whereby individual devices equipped

with sensors collect and share data for the purposes of monitoring and automation, it

is expected that the number of devices utilizing wireless communication will continue

to grow rapidly [1]. As such, there is a need to develop technologies which will allow

for more efficient use of wireless spectrum.

A popular potential solution to the problem of spectrum under-utilization is cog-

nitive radio (CR) [17]. CR refers to a dynamic implementation of a wireless network,

whereby devices in the network adaptively change their method of communication

based on the current state of the wireless channel. For instance, a CR can modify its

method of communication over a particular band of spectrum to adapt to changing

noise level or fading patterns, or even change bands entirely in favour of one which
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would enable better performance. However, a CR must also identify when a spectrum

band is not in use by another radio to avoid interference with other radios operating

over that channel. To identify optimal ways to adapt to the current state of a band

of spectrum, a CR must be able to identify channel characteristics and wireless traffic

patterns. This practice is known as spectrum sensing, and is one of primary fields of

research concerning CR.

For the purpose of addressing spectrum under-utilization, the key aspect of spec-

trum sensing, and thus also CR, is monitoring channel occupancy. Cognitive radios

are designed to improve spectrum utilization by opportunistically transmitting over

under-utilized channels, which are typically licensed and radios require permission to

transmit over the spectrum band which the channel occupies. For this to be feasible,

the CR must not ever interfere with licensed users, or primary users of that channel;

thus, the CR must be able to identify channel vacancy prior to transmitting. Ad-

ditionally, the CR, as a secondary user, must constantly monitor the channel while

transmitting so that it can back off if a primary user of the channel returns. Ad-

ditionally, the CR can simultaneously monitor other channels to identify alternative

vacancies to opportunistically make use of.

The problem of identifying channel occupancy has naturally been approached us-

ing detection theory. A wireless channel can be described as being in one of two

possible states: busy, where a radio is transmitting over the channel, or idle, where

the channel is unoccupied. Several detection approaches have been considered for

detecting the state of a channel. When the CR does not have any knowledge of how

the primary user is transmitting, energy detection has been applied to the spectrum

sensing problem [13, 27], where the CR simply identifies the presence of any energy
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amid the noise of the channel. For the case where the CR knows how the primary

user is transmitting, both matched filter detection [27] and feature detection [18, 27]

have been applied to channel occupancy detection for improved performance versus

the energy detector. Each of these detection methods are fixed block length detec-

tors, which have a couple of drawbacks for the application of spectrum sensing for

cognitive radio. Firstly, fixed block length detectors observe a fixed finite number of

observations and generally assume that the state is static over the block, which does

not accurately reflect the dynamic nature of a wireless channel. Secondly, these detec-

tion schemes are optimized solely about reliability metrics, and there is no notion of

detector agility. For these reasons, variable length detectors, more commonly known

as sequential detectors, are popular alternatives to fixed block length detectors for

the application of spectrum sensing.

Sequential detection, in general, has two classes. The first is sequential hypothesis

testing, whereby an observed random process can be described by one of two hypothe-

ses, and the detector only makes as many observations as need be to determine which

hypothesis is true with a certain level of reliability. This class of sequential detection

improves on the fixed block length detectors in that it can be designed to be agile;

however, it is still impossible to accurately model the dynamic nature of wireless

traffic with two hypotheses. The second class, namely sequential change detection,

concerns identifying a change in a random process as quickly as possible. Sequential

change detection, which is commonly referred to as quickest detection, has been ap-

plied to the problem of monitoring wireless traffic for spectrum sensing since it can

be designed for agility and inherently assumes that at least one change will occur in

the random process.
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The topic of quickest detection for identifying a single change in a random process

has been studied extensively. The Bayesian formulation, which assumes the change

time to be random with a known prior distribution, has been considered for many

applications discussed in [29, 32] but is only solved for the case where the change

time is geometrically distributed [30, 28]. A generalized version of the Bayesian for-

mulation has also been studied, where the change time is assumed to take a uniform

improper prior distribution and considers a distinct optimality criterion from the

previous Bayesian formulation. This generalized Bayesian formulation of the quickest

detection problem is solved by the Shiryaev-Roberts procedure, as shown in [23] for

the discrete time case and [30] for the continuous time case. There are certain appli-

cations where a priori knowledge of the change time is not available, in which case

the change time is assumed to be unknown, i.e. either deterministic and unknown or

random with an unknown prior distribution. For this non-Bayesian approach, several

minimax formulations have been considered, most notably that proposed by Lorden

in [15]. In [15], it was shown that Page’s cumulative sum (CUSUM) procedure [21]

is asymptotically optimal by Lorden’s criterion; however, absolute optimality of the

CUSUM procedure has been since been shown in [19]. Another minimax formulation

was proposed by Pollak in [22], which considers a less pessimistic performance metric

for detection delay than Lorden’s criterion. No solution has been found for the formu-

lation proposed by Pollak, however [24, 31, 8] hint towards a potential solution. It is

worth noting that each of the above Bayesian and non-Bayesian formulations assume

that both the initial and final distributions of the observed sequence are known. For

the application of spectrum sensing for cognitive radio, this will not generally be the

case since the radio will not necessarily know if a certain channel is occupied or not
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when it first starts observing the spectrum. As such, a more generalized approach to

the quickest detection problem would be more suitable for this application.

Several generalizations of the quickest detection of the basic quickest detection

problem have been studied. In [20], a quickest detector is considered where the ran-

dom process in not necessarily independent and identically distrbuted (IID) before

and after the change occurs. In [3], a quickest detector is proposed for the case where,

after the change occurs, the distribution of the sequence is time-varying. In [2], a

change detector is proposed where there are multiple possible distributions which the

sequence may take after the change occurs, which has been studied in particular for

the purpose of identifying changes in the drift of a Brownian motion when multiple

alternative drift parameters exist [10, 11, 12]. The problem of identifying multiple

changes which occur in sequence has been addressed in [14], where the structure of

an optimum test is found by formulating an optimization problem using partially ob-

servable Markov processes. However, similar to the basic quickest detection problem,

each of these generalizations still assume that the initial state of the observed process

is known.

For the application of detecting changes in the occupancy of wireless channels,

a priori knowledge of whether or not the channel is busy or idle upon the first ob-

servation of the channel would generally not be available to the radio unless it had

previously identified the channel’s occupancy. This motivates the development of a

quickest detector which does not require this a priori knowledge of the initial state of

the observed sequence. In [5], the change detection problem for unknown initial state

is formulated using an optimal stopping approach based on Bayesian decision theory

under an exponential delay-cost model, specifically for the case where there are two
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possible distributions which the sequence can assume. In [6], the change detector

presented in [5] was improved by including an additional cost for initial state uncer-

tainty, which allows for the test to achieve lower probabilities of incorrectly selecting

the initial state of the observe sequence. In this thesis, the change detector from [6]

is generalized for the case where the number of distributions which the sequence can

take both before and after the change is greater than or equal to two.

1.2 Contributions

The contributions of this thesis are listed as follows:

1. The problem of quickest detection detection problem under the assumption

of unknown initial state is formulated. Specifically, this thesis addresses the

problem of identifying an abrupt change in distribution in a sequence of IID

random variables where both the initial and final distributions of the sequence

are known to belong to a set of D ≥ 2 distinct probability density functions but

it is unknown which of the D distributions they are a priori. The problem is

approached from a Bayesian hypothesis testing framework with and an assumed

set of costs.

2. A new change detector is proposed that is a generalization of the detector

design from [6], which only considers the case where D = 2, is proposed to

accommodate an arbitrarily large number of distributions which the observed

sequence can take both before and after the change, i.e. D ≥ 2. The proposed

detector

(a) uses a time-varying exponential cost structure, and
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(b) can be implemented using a time-recursive algorithm which achieves con-

stant computational complexity.

3. The performance of the proposed change detector is evaluated both analytically

and via Monte Carlo simulations. These evaluations

(a) reveal performance trade-offs and limitations which the proposed change

detector exhibit for the cases of both asymptotically large change times

and finite change times as well as provide performance trade-offs for test

design, and

(b) benchmark the performance of the proposed change detector against CUSUM,

a minimax-optimal quickest detector for the problem where both the initial

and final distributions of the sequence are known.

1.3 Organization of Thesis

The organization of this thesis is described below.

In Chapter 2, a brief summary of the two classical quickest detection formulations

is provided to give context for the problem addressed in this thesis. The summary

focuses on formulations of the fundamental quickest detection problem, i.e, where a

single change in distribution occurs and both the initial and final distributions of the

observed sequence are known. In this summary, key performance metrics utilized to

characterize this class of detection problem are provided. The algorithm for Page’s

CUSUM procedure, which is optimal by Lorden’s minimax formulation, is described

in detail for later reference.
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In Chapter 3, the problem of change detection under unknown initial state is de-

scribed in detail. The problem is then formulated using an optimal stopping approach

based on Bayesian hypothesis testing. A cost structure is then proposed and shown

to yield a procedure which can be computed recursively for constant computational

complexity.

In Chapter 4, the performance of the change detection scheme formulated in Chap-

ter 3 is characterized analytically. Specifically, parameter bounds for the proposed

cost structure are developed. Under these parameter bounds, methods of character-

izing the initial transient performance of the test, i.e. when the number of samples

observed from the initial distribution is low and the probability of incorrectly identi-

fying the initial distribution is high. Additionally, various performance trade-offs are

highlighted which can be manipulated via parameter selection for the purpose of test

design.

In Chapter 5, results obtained from Monte Carlo simulations are provided to char-

acterize the performance of the change detector proposed in Chapter 3. The results

from the simulations are compared to the results obtained from the performance

analyses in Chapter 4. The results obtained from the simulations are also used to

benchmark the performance of the proposed change detector against CUSUM.

In Chapter 6, a summary of this thesis is provided. Conclusions are drawn from

the key findings in Chapters 2 through 5, and finally a discussion about possible

future research is provided.
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Chapter 2

Background

In this chapter, a brief summary of some existing formulations for the quickest detec-

tion problem is given to provide context for the problem which is addressed later in

this thesis. The focus of this chapter will be the two most basic formulations of the

quickest detection problem, i.e, the Bayesian formulation and Lorden’s minimax for-

mulation, where both the initial and final distributions of the observed sequence are

known. These formulations reveal the various performance metrics used to charac-

terize quickest detectors depending on what prior knowledge is available. The known

optimal solution to Lorden’s minimax formulation of the quickest detection problem,

CUSUM, will be described in detail for later reference.

2.1 Quickest Detection Problem Statement

The basic quickest detection problem will first be described in detail. Let X1,n =

{Xi|i = 1, 2, . . . , n} be n independent random variables observed sequentially. The

beginning of sequence is known to be distributed according to the probability density

function (PDF) f0 up until some unknown change timem ∈ Z+, i.e. X1, X2, . . . , Xm−1

are each distributed according to f0. Following the change, the sequence is distributed
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according to another known PDF f1. While observing X1,n sequentially, the objective

is to determine, as quickly as possible, when this single change in distribution occurs.

The Bayesian and minimax formulations of this problem differ in what a priori

knowledge of the change time, m, is assumed. Regardless of which formulation the

problem is approached with, there are three outcomes which can result from a change

detector for this problem. If the detector incorrectly identifies that a change has

occurred, i.e. the detector declares a change prior to the change actually happening,

a false alarm is said to have occurred. If the detector correctly identifies that a change

has occurred, then there is detection delay equal to the difference between the time of

detection and the actual change time. If, prior to a change happening, the detector

never declares that a change has occurred, there is a missed detection.

2.2 Bayesian Formulation of the Quickest Detection Problem

In the Bayesian formulation of the quickest detection problem, the change time M is

assumed to be random with a known distribution P (M = k), k ∈ Z+. From Section

2.1, the objective is to identify that a change has occurred as quickly as possible,

while limiting the detectors propensity to result in false alarms. Suppose that the

time the detector declares that a change occurs is τ . The average detection delay,

conditioned on the change being identified correctly, is given by

ADD(τ) = E[τ −M |τ > M ]. (2.1)
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The detectors propensity to result in false alarms can be measured by the probability

of false alarm, given by

PFA(τ) = P [τ < m]. (2.2)

The optimal test, under the Bayesian formulation, minimizes the average detection

delay subject to a upper limit on the probability of false alarm, α, i.e. the optimal

stopping time

min ADD(τ) subject to PFA(τ) ≤ α. (2.3)

No general solution to the problem has been found, however Shiryaev’s formulation

yields an explicit solution only for the case where the change time is geometrically

distributed [30, 28].

2.3 Minimax Formulations of the Quickest Detection Problem

In contrast to the Bayesian formulation, non-Bayesian formulations treat the change

time m as being completely unknown, i.e. either deterministic and unknown or ran-

dom with an unknown distribution. Without any knowledge (or making any assump-

tions) about the change time, the average detection delay and the probability of false

alarm cannot be calculated since they, in general, depend on the change time itself.

Minimax formulations consider alternative performance metrics for the case where

prior knowledge of the change time is not available.

The most popular minimax formulation for the quickest detection problem was

proposed by Lorden in [15]. In Lorden’s formulation, the change time is treated as



2.3. MINIMAX FORMULATIONS OF THE QUICKEST DETECTION
PROBLEM 13

being deterministic but unknown. Under Lorden’s criterion, the performance metrics

which characterize the detection delay and frequency of false alarms are the worst-case

detection delay (WDD) and the false alarm rate (FAR). Let Em denote expectation

over the sequence with change time m and initial and final distributions f0 and f1

respectively. The worst-case detection delay is defined as

WDD(τ) = sup
m≥1

max Em[(τ −m)+], (2.4)

where x+ = max(x, 0), and is the largest expectated detection delay over all possible

change times and realizations of the sequence for those change times. The false alarm

rate is defined as

FAR(τ) =
1

E∞[τ ]
, (2.5)

and is calculated as the inverse of the average run length (ARL) to false alarm, or

mean time to false alarm conditioned a change never occuring. Lorden’s criterion

is such that the optimal test minimizes the worst-case detection delay subject to an

upper bound α on the false alarm rate, i.e.

min WDD(τ) subject to FAR(τ) ≤ α. (2.6)

In [19] it is shown that Page’s cumulative sum (CUSUM) procedure is optimal by

Lorden’s criterion, and has been used extensively for a number of applications.
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2.3.1 Page’s Cumulative Sum (CUSUM) Procedure

Page’s CUSUM procedure is a sequential change detection procedure which solves

the change detection problem described in Section 2.1 optimally according to the

minimax formulation by Lorden [15], as was proven in [19]. At every time t, the

test calculates a test statistic Qt and decides whether or not a change has occurred

based on the value of the test statistic. The test is initialized with Q0 = 0, and every

subsequent test statistic is calculated as

Qt = (Qt−1 + LLR(xt))
+ (2.7)

where

LLR(xt) = log

(
f1(xt)

f0(xt)

)
(2.8)

is the log-likelihood ratio (LLR) of the newest sample being in favour of the post-

change distribution f1 over the initial distribution of the sequence, f0. The test stops

and declares that a change has occurred as soon as the test statistic Qt becomes

greater than β > 0, a pre-determined test threshold. The algorithm is formally

tabulated in Algorithm 1.

Page’s CUSUM procedure exhibits a couple of properties which are intuitively

desirable for a change detection scheme under the assumption of an unknown change

time. To illustrate these properties, Kullback-Leibler divergence will first be defined.
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Algorithm 1: Page’s CUSUM Procedure

Q0 ← 0
t← 0
repeat
t← t+ 1
{ Observe xt. }
l← log(f1(xt)/f0(xt))
Qt ← (Qt−1 + l)+

until Qt > β
{ Stop and declare that change has occurred. }

For two PDFs a and b defined over the same support C, the Kullback-Leibler diver-

gence between the PDFs a and b is given by

DKL(a||b) =

∫
C
a(x) log

(
a(x)

b(x)

)
dx. (2.9)

Kullback-Leibler divergence serves as a measurement of similarity between two PDFs.

Additionally, it will be noted that DKL(a||b) ≥ 0 with equality if and only if a and b

are the same PDF, a result which is known as Gibb’s inequality.

Consider the expected value of the log-likelihood ratio LLR(Xt) conditioned on

Xt being distributed according to the pre-change distribution f0, which is given by

Ef0 [LLR(Xt)] = Ef0
[
log

(
f1(Xt)

f0(Xt)

)]
= −Ef0

[
log

(
f0(Xt)

f1(Xt)

)]
= −DKL(f0||f1)

≤ 0. (2.10)

Similarly, the expected value of the log-likelihood ratio LLR(Xt) conditioned on Xt
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being distributed according to the post-change distribution f1 is given by

Ef1 [LLR(Xt)] = Ef0
[
log

(
f1(Xt)

f0(Xt)

)]
= Ef1

[
log

(
f1(Xt)

f0(Xt)

)]
= DKL(f1||f0)

≥ 0. (2.11)

Interpreting (2.10) in the context of the CUSUM statistic update (2.7), since

Ef0 [LLR(Xt)] ≤ 0, Qt will tend to reset to zero prior to the change time, i.e, for

t < m when Xt ∼ f0. Conversely, since Ef1 [LLR(Xt)] ≥ 0, Qt will tend to increase

linearly after the change occurs, i.e. for t ≥ m when Xt ∼ f1.

A couple observations can be made from the preceding details. The average detec-

tion delay of the CUSUM procedure conditioned on the last pre-change test statistic

Qm−1 is determined by the average rate of increase of the CUSUM statistic after the

change, DKL(f1||f0), and the distance between Qm−1 and the test threshold β. As

such, the worst conditional average detection delay for a given change time m will

be for the smallest Qm−1, i.e. if the CUSUM test statistic resets to zero immediately

prior to the change occurring. Furthermore, the worst conditional average detection

delay is the same for all change times m and is finite for all finite test thresholds

β > 0. In the absence of any knowledge of the change time, this is obviously a

desirable property.

Another observation is based on the fact that, prior to the change occurring,

CUSUM’s test statistic tends to reset to a value of zero. Recall that a false alarm

occurs if the test statistic becomes larger than the test threshold β prior to the change
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actually happening. At any time t, the likelihood of the upcoming observations

Xt+1,Xt+2,... resulting in a false alarm is larger when Qt is closer to β. Since Qt has

a tendency to keep a fixed distance from β, CUSUM’s average propensity to have to

upcoming observations prior to the change result in a false alarm remains the same

over time, which is another desirable property for a non-Bayesian change detector.
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Chapter 3

Problem Formulation

In Chapter 2, a brief summary was conducted on a couple of existing formulations of

the basic quickest detection problem, i.e, where the objective is to identify a single

change in distribution and both the initial and final distributions are known. In this

chapter, the quickest detection problem is generalized to the case where both the

initial and final distributions of the sequence are not explicitly known a priori but

each are known to belong to a set of known PDFs. The problem is formulated using

an optimal stopping approach based on Bayesian hypothesis testing. A cost structure

is then proposed and shown to yield a procedure which can be computed recursively

for constant computational complexity.

3.1 Problem Statement

Let X1,n = {Xi|i = 1, 2, . . . , n} be n independent random variables observed sequen-

tially. Each of these random variables are known to follow one of D possible known

distributions, which are described by the probability density functions (PDF) fj, for

j ∈ {0, 1, . . . , D − 1}. While observing X1,n sequentially, the objective is to deter-

mine, as quickly as possible, whether a single change in distribution has occurred at
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some unknown discrete time m ∈ Z+ without prior knowledge of the initial or final

distributions.

3.2 Bayesian Hypothesis Testing Approach

At time n, without knowledge of the starting PDF (of X1), a sequence of independent

random variables, X1,n, is observed. The sequence X1,n may assume D+(n−1) D!
(D−2)!

possible joint distributions, which can be enumerated as follows: D of the sequences,

corresponding to no change, are described by the sequenceX1,n where allXi, 1 ≤ i ≤ n

are distributed according to fj, where j ∈ S = {0, 1, . . . , D − 1}. The remaining

(n − 1) D!
(D−2)!

possible sequences, which correspond to each of the possible single

distribution changes which occur after the first sample, are described by the sequence

X1,n where Xi, 1 ≤ i < m, are distributed according to fj, and the rest of the Xi,

m ≤ i ≤ n, are distributed according to fk, where (j, k) ∈ S2 = {(a, b) | a, b ∈

S and a 6= b} and 1 < m ≤ n is the change time. At time n, there are (n− 1) D!
(D−2)!

change hypotheses as there are n− 1 possible change times after the first sample and

D!
(D−2)!

is the number of ordered subsets of 2 elements in S. Classically, for a fixed

number of samples, the detection problem is one of M(n)-ary hypothesis testing [25],

where the M(n) = D + (n − 1) D!
(D−2)!

hypotheses correspond to each of the possible

sequences. The notation adopted to represent of the hypotheses is given by:

H1,n(j) = {Xi ∼ fj|1 ≤ i ≤ n} j ∈ S (3.1)

Hm,n(j, k) =

 Xi ∼ fj|1 ≤ i < m

Xi ∼ fk|m ≤ i ≤ n

 1 < m ≤ n, (j, k) ∈ S2 (3.2)
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The following terminology is adopted for the sequential test: before a change oc-

curs, when H1,n(j), j ∈ S is selected, there is no detection of a change. If

Hm,n(j, k), (j, k) ∈ S2, 1 < m ≤ n, is selected before a change occurs when H1,n(j)

is true, a false alarm occurs. On the other hand, if H1,n(j), j ∈ S is selected and

any change has occurred at time 1 < m < n there is detection delay. If Hm,n(j, k),

for 1 < m ≤ n is selected, and the true hypothesis is Hl,n(j, s), for 1 < l ≤ n,

(j, k) ∈ S2, (j, s) ∈ S2, and k 6= s, then an incorrect detection from final state occurs.

If Hm,n(j, k), for 1 < m ≤ n is selected, and the true hypothesis does not have fj as

it’s initial distribution, then an incorrect detection from initial state occurs, regardless

of the accuracy of the selected final state fk or the selected change time m.

Suppose for now that n is fixed. To formulate a decision rule to select among

the M(n) = D + (n − 1) D!
(D−2)!

possible hypotheses, we adopt a Bayesian framework

based on selecting the hypothesis with minimum risk according to Bayesian M(n)-

ary hypothesis testing. Under equally likely prior probabilities of change time, a

Bayesian hypothesis test minimizes the posterior risk associated with each of the

M(n) hypotheses. However, when an infinite-duration sequence is causally observed,

the number of hypotheses grows with n, which results in increasing computation and

memory. To alleviate this, a time-recursive version of Bayes risk computation testing

is formulated in the sequel.

In a Bayesian formulation, the posterior probabilities for each hypothesis being

true given X1,n = x1,n need to be tracked over time. The posterior probability

that the hypothesis Hm,n(j, k), (j, k) ∈ S2 is true given X1,n = x1,n is denoted by

P (Hm,n(j, k)|X1,n = x1,n) for 1 < m ≤ n, and similarly the posterior probability that

the hypothesis H1,n(j), j ∈ S is true given X1,n = x1,n is denoted by P (H1,n(j)|X1,n =
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x1,n). Using Bayes’ Rule,

P (Hm,n(j, k)|X1,n = x1,n) =
P (X1,n = x1,n|Hm,n(j, k))P (Hm,n(j, k))

P (X1,n = x1,n)
(3.3)

where P (X1,n = x1,n|Hm,n(j, k)) is the likelihood of observing X1,n = x1,n given

that Hm,n(j, k) is true, P (Hm,n(j, k)) is the prior probability of Hm,n(j, k), and

P (X1,n = x1,n) is the likelihood of observing X1,n = x1,n for the n samples received.

An equivalent expression to (3.3) can be written for the posterior probability of the

hypothesis H1,n(j), j ∈ S being true given X1,n = x1,n. From the assumed indepen-

dence conditioned on a certain hypothesis, the likelihood functions are

P (X1,n = x1,n|H1,n(j)) =
n∏
i=1

fj(xi) j ∈ S (3.4)

P (X1,n = x1,n|Hm,n(j, k)) =
m−1∏
i=1

fj(xi)
n∏

i=m

fk(xi) (j, k) ∈ S2, 1 < m ≤ n (3.5)

Define hypotheses H1 and H2, each of which assume the form of either (3.1) or (3.2).

The proposed Bayes formulation uses costs denoted as L(H1, H2), which is the cost

of choosing H1 when H2 is true. Additionally, the notation used for prior hypothesis

probabilities is

πm(j, k) ≡ prior probability that Hm,n(j, k) is true, (j, k) ∈ S2, m > 1

π1(j) ≡ prior probability that H1,n(j) is true, j ∈ S

A Bayes test can be formulated using a uniform cost structure, i.e.,

L(H1,n(j1), H1,n(j2)) = 0 for j1 = j2 ∈ S, L(Hm1,n(j1, k1), Hm2,n(j2, k2)) = 0 for

m1 = m2 and (j1, k1) = (j2, k2) ∈ S2, and all costs otherwise equal 1. The uniform
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cost structure can be used to determine the maximum a posteriori hypothesis at each

n; however, alternative cost structures to reflect the problem’s time-sequential nature

are more appropriate. Exponential cost has been explored in [26] for change detec-

tion problems where the initial state is known, and allow for performance trade offs

between average detection delay and false alarm rate. For change detection under

unknown initial state, undesired incorrect detections may also occur and a method

of controlling these errors is needed.

Incorrect detection arising from initial state uncertainty of the sequence {Xi|i =

1, 2, · · · , n} occurs if a change from fj to fk is declared while fk is the initial state,

for (j, k) ∈ S2. Hypothesis Hm,n(j, k), for 1 < m ≤ n, has its first m − 1 samples

correspond to the initial state. A non-sequential Bayesian test of allM(n)-ary possible

hypotheses does not associate a cost with uncertainty in initial state, as the likelihood

of a certain hypothesis is a function of all n observed samples. The notion of Bayes’

risk for initial state uncertainty for each of the possible (n−1) D!
(D−2)!

change hypotheses

is therefore needed in the formulation. Let H1,m−1(j), j ∈ S, denote the hypothesis

with change time 1 < m ≤ n and initial state fj. Let the corresponding prior

probabilities be denoted by φ(j), j ∈ S. Using Bayes’ rule, the posterior probabilities

for these hypotheses are

P (H1,m−1(j)|X1,m−1 = x1,m−1) =

P (X1,m−1 = x1,m−1|H1,m−1(j))P (H1,m−1(j))

P (X1,m−1 = x1,m−1)
, j ∈ S. (3.6)
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The likelihood term in (3.6) can be calculated using independence as

P (X1,m−1 = x1,m−1|H1,m−1(j)) =
m−1∏
i=1

fj(xi), j ∈ S. (3.7)

Define incorrect detection costs I(j, k) ≡ cost of choosing H1,m−1(j) when H1,m−1(k)

is true for j, k ∈ S. Regarding notation, S−j is used to denote the set S excluding

the element j. The conditional risk in choosing hypothesis Hm,n(j, k), 1 < m ≤ n,

(j, k) ∈ S2, given X1,n = x1,n can be expressed as

Rm,n(j, k)

=
∑
{r∈S}

(
L(Hm,n(j, k), H1,n(r))P (H1,n(r)|X1,n = x1,n)

+
∑
{s∈S−r}

(
n∑
i=2

(L(Hm,n(j, k), Hi,n(r, s))P (Hi,n(r, s)|X1,n = x1,n))

))

+
∑
{r∈S}

(
I(j, r)P (H1,m−1(r)|X1,m−1 = x1,m−1)

)
(3.8)

Similarly, the conditional risk in choosing hypothesis H1,n(j), j ∈ S, which corre-

sponds to no change, given X1,n = x1,n, is

R1,n(j)

=
∑
{r∈S}

(
L(H1,n(j), H1,n(r))P (H1,n(r)|X1,n = x1,n)

+
∑
{s∈S−r}

(
n∑
i=2

(L(H1,n(j), Hi,n(r, s))P (Hi,n(r, s)|X1,n = x1,n))

))
. (3.9)
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It is desired, at every n, to determine the minimum-risk hypothesis, expressed as

arg min
{

R1,n(i), Rm,n(j, k)
∣∣∣ i ∈ S, (j, k) ∈ S2, 1 < m ≤ n

}
. (3.10)

It is assumed that all hypotheses have equally likely prior probabilities, i.e., π =

π1(j) = πm(j, k) = 1/M(n), (j, k) ∈ S2, and equally likely initial states, i.e., φ =

φ(j)d = 1/D, j ∈ S.
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3.3 Cost Structure

To penalize detection delay, false alarms, and incorrect detection, a time-varying

exponential cost structure is adopted. The cost structure consists of four distinct

types of costs L(H1, H2):

1. Zero Cost: If H1 = H2, there is no cost (i.e. L(H1, H2) = 0).

2. Fixed Costs of False Alarm and Incorrect Final State: If H1 and H2

share the same initial and final states and H1 corresponds to a change occur-

ring earlier than in H2, the cost L(H1, H2) is a fixed cost of false alarm, b.

Additionally, if H1 and H2 share the same initial states but not the same final

states, the cost L(H1, H2) is a fixed cost of incorrect final state, which is the

same as the fixed cost of false alarm, b.

3. Exponential Cost of Delay: If H1 and H2 share the same initial and final

states and H1 corresponds to a change occurring later than in H2, the cost

L(H1, H2) is an exponential cost of delay with base a, and the exponent is the

delay by which H1 lags H2.

4. Exponential Cost of Incorrect Detection from Initial State: If H1 and

H2 do not share the same initial state, the cost L(H1, H2) is an exponential

cost of incorrect detection from initial state with base c, and the exponent is

the number of samples in H1 and H2 which are distributed differently.

For clarity, the cost structure described above will be given explicitly. The cost

L(Hm1,n(j1, k1), Hm2,n(j2, k2)), for 1 < m1 ≤ n, 1 < m2 ≤ n, (j1, k1) ∈ S2, and
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(j2, k2) ∈ S2, is given by

L(Hm1,n(j1, k1), Hm2,n(j2, k2)) ≡

b if j1 = j2 and k1 = k2

b if j1 = j2 and k1 6= k2

cm2−1 if j1 6= j2 and k1 = k2

cn−m2+1cm1−1 if j1 6= j2, k1 6= k2, and k1 = j2

cn if j1 6= j2, k1 6= k2, and k1 6= j2


m2 > m1

am1−m2 if j1 = j2 and k1 = k2

b if j1 = j2 and k1 6= k2

cm1−1 if j1 6= j2 and k1 = k2

cn−m1+1cm2−1 if j1 6= j2, k1 6= k2, and k2 = j1

cn if j1 6= j2, k1 6= k2, and k2 6= j1


m1 > m2

b if j1 = j2 and k1 6= k2

cm1−1 if j1 6= j2 and k1 = k2

cn if j1 6= j2 and k1 6= k2

0 if j1 = j2 and k1 = k2


m1 = m2.

(3.11)

The cost L(H1,n(j1), Hm2,n(j2, k2)), for 1 < m2 ≤ n, j1 ∈ S, and (j2, k2) ∈ S2, is given

by

L(H1,n(j1), Hm2,n(j2, k2)) ≡


an−m2+1 if j1 = j2

cn if j1 6= j2 and j1 6= k2

cm2−1 if j1 6= j2 and j1 = k2.

(3.12)
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The cost L(Hm1,n(j1, k1), H1,n(j2)), for 1 < m1 ≤ n, (j1, k1) ∈ S2, and j2 ∈ S, is given

by

L(Hm1,n(j1, k1), H1,n(j2)) ≡


b if j1 = j2

cn if j1 6= j2 and j2 6= k1

cm1−1 if j1 6= j2 and j2 = k1.

(3.13)

The cost L(H1,n(j1), H1,n(j2)), for j1 ∈ S and j2 ∈ S, is given by

L(H1,n(j1), H1,n(j2)) ≡

 cn if j1 6= j2

0 if j1 = j2.
(3.14)

Additionally, to penalize initial state uncertainty, for j, k ∈ S, the following costs are

adopted:

I(j, k) ≡

 t if j 6= k

0 if j = k.
(3.15)

In (3.11) - (3.14), the constant a > 1 represents the base of the exponentially in-

creasing cost of delay when the change is in the correct direction from initial state,

and c > 1 represents the base of the exponential cost of incorrect detection. The

parameter b > 0 serves as the fixed cost of early correct detection, or false alarm, and

as the fixed cost of incorrect final state. In (3.15), the parameter t > 0 serves as the

fixed cost of initial state uncertainty.
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3.4 Recursive Algorithm

Applying the cost structure in (3.11)-(3.14) to (3.9), as well as equally likely priors,

the risk associated with choosing hypothesis H1,n(j) at time n is given by

R1,n(j)

=
π

P (X1,n = x1,n)

 ∑
{s∈S−j}

(
n∑

i=2

(
an−i+1P (X1,n = x1,n|Hi,n(j, s))

))

+
∑

{r∈S−j}

(
cnP (X1,n = x1,n|H1,n(r)) +

∑
{s∈S−j−r}

( n∑
i=2

(
cnP (X1,n = x1,n|Hi,n(r, s))

))

+

n∑
i=2

(
ci−1P (X1,n = x1,n|Hi,n(r, j))

))]
. (3.16)

R1,n(j) can be updated from R1,n−1(j), the most recently observed sample xn, and

the likelihoods for each of the no-change hypotheses at time n−1 by using recursions

provided in Section 3.6. Showing that the minimum risks Rm,n(j, k), 1 < m ≤ n,

(j, k) ∈ S2 in Eq. (3.10) can be tracked recursively is more involved, as the minimum

risk change time may vary over time. Let m represent the minimum risk change

time at time n and let m′ be the minimum risk change time corresponding to time

n− 1. The minimum risk corresponding to change time m is then updated at time n

according to

Rm,n(j, k) = min{ Rn,n(j, k), Rm′,n(j, k) }. (3.17)

In (3.17), the Bayes risk Rn,n(j, k) can be expressed using Eq. (3.8) by substituting

the change time, m, with time n. Using the cost structure (3.11)-(3.15), Rn,n(j, k)
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can be expressed as

Rn,n(j, k)

=
π

P (X1,n = x1,n)

[
n−1∑
i=2

(
an−i+1P (X1,n = x1,n|Hi,n(j, k))

)
+ bP (X1,n = x1,n|H1,n(j))

+
∑

{s∈S−j−k}

(
n∑

i=2

(
bP (X1,n = x1,n|Hi,n(j, s))

))

+
∑

{r∈S−j−k}

(
cnP (X1,n = x1,n|H1,n(r))

)
+ cn−1P (X1,n = x1,n|H1,n(k))

+
∑

{r∈S−j−k}

(
n∑

i=2

(
cn−1P (X1,n = x1,n|Hi,n(r, k))

)
+

n∑
i=2

(
ciP (X1,n = x1,n|Hi,n(r, j))

))

+

n∑
i=2

(
ciP (X1,n = x1,n|Hi,n(k, j))

)
+

∑
{s∈S−j−k}

(
n∑

i=2

(
cnP (X1,n = x1,n|Hi,n(k, s))

))

+
∑

{r∈S−j−k}

( ∑
{s∈S−j−k−r}

(
n∑

i=2

(
cnP (X1,n = x1,n|Hi,n(r, s))

)))]

+ t

∑
{r∈S−j}

∏n−1
i=1 fr(xi)∑

{r∈S}
∏n−1

i=1 fr(xi)
(3.18)

and can be updated from Rn−1,n−1(j, k), the most recently observed sample xn, and

the likelihoods for the no-change hypotheses at time n−1 using the recursions provided

in Section 3.6. In (3.17), Rm′,n(j, k) can similarly be expressed by substituting the

change time m with the recursively tracked change time m′ in (3.8). Using the cost
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structure (3.11)-(3.15), Rm′,n+1(j, k) can be expressed as

Rm′,n(j, k)

=
π

P (X1,n = x1,n)

[
m′−1∑
i=2

(
am
′−iP (X1,n = x1,n|Hi,n(j, k))

)
+

n∑
i=m′+1

(
bP (Xn

1 = xn1 |Hi,n(j, k))
)
+ bP (X1,n = x1,n|H1,n(j))

+
∑

{s∈S−j−k}

(
m′∑
i=2

(
bP (X1,n = x1,n|Hi,n(j, s))

)
+

n∑
i=m′+1

(
bP (X1,n = x1,n|Hi,n(j, s))

))

+
∑

{r∈S−j−k}

(
cnP (X1,n = x1,n|H1,n(r))

)
+ cm

′−1P (X1,n = x1,n|H1,n(k))

+
∑

{r∈S−j−k}

(
m′∑
i=2

(
cm
′−1P (X1,n = x1,n|Hi,n(r, k))

)
+

n∑
i=m′+1

(
ci−1P (X1,n = x1,n|Hi,n(r, k))

)

+

m′∑
i=2

(
cn−m

′+1ci−1P (X1,n = x1,n|Hi,n(r, j))
)
+

n∑
m′+1

(
cnP (X1,n = x1,n|Hi,n(r, j))

))

+

m′∑
i=2

(
cn−m

′+1ci−1P (X1,n = x1,n|Hi,n(k, j))
)
+

n∑
m′+1

(
cn−i+1cm

′−1P (X1,n = x1,n|Hi,n(k, j))
)

+
∑

{s∈S−j−k}

(
m′∑
i=2

(
cnP (X1,n = x1,n|Hi,n(k, s))

)

+

n∑
m′+1

(
cn−i+1cm

′−1P (X1,n = x1,n|Hi,n(k, s))
))

+
∑

{r∈S−j−k}

( ∑
{s∈S−j−k−r}

(
n∑

i=2

(
cnP (X1,n = x1,n|Hi,n(r, s))

)))]

+ t

∑
{r∈S−j}

∏m′−1
i=1 fr(xi)∑

{r∈S}
∏m′−1

i=1 fr(xi)
(3.19)

and can be updated from Rm,n−1(j, k), the most recently observed sample xn, and the

likelihoods for the no-change hypotheses at time n− 1 using the recursions provided

in Section 3.6.

The above shows that at any time n, the minimum-risk hypothesis among the
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D + (n − 1) D!
(D−2)!

possible change scenarios can be determined. Additionally, using

the recursions which are shown in detail in Section 3.6, the minimum-risk hypothesis

can be calculated with constant complexity over time by only calculating D+ 2 D!
(D−2)!

out of the D+ (n− 1) D!
(D−2)!

risks in a recursive fashion. It is worth noting that while

recursive tracking of Bayes risk may be extendible to other cost structures, the one

chosen above will be shown in the next section to possess certain desirable properties.

3.5 An Example

An example is provided to illustrate the proposed change detector. For the example,

we will assume that the states which the observed sequence can assume are described

by a set of bivariate Gaussian distributions which have means equally spaced around

the unit circle and each have the covariance matrix Σ = σ2I2, where σ2 = 1 and I2 is

the 2 × 2 identity matrix. Formally, for a given value of D ≥ 2, fj is a multivariate

Gaussian distribution with mean µj = [cos(2πj
D

) sin(2πj
D

)]> and covariance matrix

Σ = I2 for j ∈ S = {0, 1, . . . , D − 1}. Figures 3.1, 3.2, and 3.3 show the evolution

over time of each of the recursively tracked risks, i.e. R1,n(j) for every j ∈ S and

Rm,n(j, k) for every (j, k) ∈ S2, when a change occurs from f0 to f1 at the 100th

sample for a single Monte Carlo trial when D = 2, D = 3, and D = 4 respectively. In

each simulation, the parameter values used are a = 1.1, c = 1.5, b = 103, and t = 105.

In Figures 3.1 through 3.3, the plots are formatted similarly. Each of the risks are

grouped by color according to the initial state of the hypothesis which they represent,

i.e. risks for hypotheses which have initial state f0 are plotted in black, risks for

hypotheses which have initial state f1 are plotted in blue, etc. Risks which correspond

to no change are plotted as a solid line, while the minimum risks corresponding to
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Figure 3.1: Plot of each of the recursively tracked risks over time for a single Monte
Carlo trial when D = 2 and each of the distributions are multivariate
Gaussian with means equally spaced about the unit circle and covariance
matrices Σ = I2. In this trial, a change from f0 to f1 occurs at the 100th

sample. Parameter values are a = 1.1, c = 1.5, b = 103, and t = 105.
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Figure 3.2: Plot of each of the recursively tracked risks over time for a single Monte
Carlo trial when D = 3 and each of the distributions are multivariate
Gaussian with means equally spaced about the unit circle and covariance
matrices Σ = I2. In this trial, a change from f0 to f1 occurs at the 100th

sample. Parameter values are a = 1.1, c = 1.5, b = 103, and t = 105.
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Figure 3.3: Plot of each of the recursively tracked risks over time for a single Monte
Carlo trial when D = 4 and each of the distributions are multivariate
Gaussian with means equally spaced about the unit circle and covariance
matrices Σ = I2. In this trial, a change from f0 to f1 occurs at the 100th

sample. Parameter values are a = 1.1, c = 1.5, b = 103, and t = 105.
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change are plotted as non-solid lines. Observing Figures 3.1 through 3.3, in each

example, before the change occurs at the 100th sample, the risk corresponding to

the correct no-change hypothesis, R1,n(0), is the smallest risk. After the change

occurs, R1,n(0) increases in value while Rm,n(0, 1), the recursively tracked minimum

risk corresponding to a change from f0 to f1, descreases in value. At some time n

after the change occurs, the risk Rm,n(0, 1) becomes the smallest risk and thus, as

per the decision rule (3.10), the test would identify correctly that a change from f0

to f1 occurs at the recursively tracked change time m. In each of the examples, this

decision occurs several observations after the change at time n = 100, so there is

detection delay in each case.
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3.6 Detailed Recursions

3.6.1 Recursive Update of π/P (X1,n = x1,n)

With the exception of initial state uncertainty risk terms, all risk terms have a com-

mon factor of

π

P (X1,n = x1,n)

=π

( ∑
{r∈S}

(
π1(r)P (X1,n = x1,n|H1,n(r))

)
+

∑
{(r,s)∈S2}

( n∑
i=2

πi(r, s)P (X1,n = x1,n|Hi,n(r, s))

))−1

=

( ∑
{r∈S}

(
P (X1,n = x1,n|H1,n(r))

)
+

∑
{(r,s)∈S2}

( n∑
i=2

P (X1,n = x1,n|Hi,n(r, s))

))−1
. (3.20)

This factor cannot directly be calculated recursively; however, it can be calculated

efficiently without increasing computational complexity over time. This is done by

grouping likelihood terms as follows:

π

P (X1,n = x1,n)
=

( ∑
{r∈S}

(
P (X1,n = x1,n|H1,n(r))

)

+
∑
{s∈S}

( ∑
{r∈S−s}

( n∑
i=2

P (X1,n = x1,n|Hi,n(r, s))
)))−1

. (3.21)

For each r ∈ S, the likelihood P (X1,n = x1,n|H1,n(r)) is updated recursively using

(3.4):

P (X1,n+1 = x1,n+1|H1,n(r)) = fr(xn+1)P (X1,n = x1,n|H1,n(r)). (3.22)
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For each s ∈ S, the sum of likelihoods
∑
{r∈S−s}(

∑n
i=2 P (X1,n = x1,n|Hi,n(r, s))) is

updated recursively using (3.4) and (3.5):

∑
{r∈S−s}

( n∑
i=2

P (X1,n+1 = x1,n+1|Hi,n(r, s))
)

=fs(xn+1)

( ∑
{r∈S−s}

( n∑
i=2

P (X1,n = x1,n|Hi,n(r, s))
)

+
∑
{r∈S−s}

(
P (X1,n = x1,n|H1,n(r))

))
. (3.23)

In (3.23), the sum of likelihoods
∑
{r∈S−s}(P (X1,n = x1,n|H1,n(r))) is calculated from

the recursively calculated terms in (3.22).

Thus, π/P (X1,n = x1,n) can be calculated with constant computational complexity

from 2D recursively calculated terms.

3.6.2 Recursive Update of R1,n(j), for j ∈ S:

The risk R1,n(j) can be updated efficiently by recursively updating individual sums

of risk terms. The sums of risk terms are partitioned by cost type and then by the

various initial, final, or initial and final states which are associated the given cost
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type. Using the cost structure (3.11)-(3.15) and (3.9),

R1,n(j)

=
π

P (X1,n = x1,n)


∑
{s∈S−j}

( R1,n(j)(1,s)︷ ︸︸ ︷
n∑
i=2

(
an−i+1P (X1,n = x1,n|Hi,n(j, s))

))

+
∑
{r∈S−j}

(
cnP (X1,n = x1,n|H1,n(r))︸ ︷︷ ︸

R1,n(j)(2,r)

+
n∑
i=2

(
ci−1P (X1,n = x1,n|Hi,n(r, j))

)
︸ ︷︷ ︸

R1,n(j)(3,r)

)

+
∑

{(r,s)∈S−j
2}

( n∑
i=2

(
cnP (X1,n = x1,n|Hi,n(r, s))

)
︸ ︷︷ ︸

R1,n(j)(4,(r,s))

) (3.24)

where

R1,n(j)(1, s) =
n∑
i=2

(
an−i+1P (X1,n = x1,n|Hi,n(j, s))

)
for s ∈ S−j, (3.25)

R1,n(j)(2, r) = cnP (X1,n = x1,n|H1,n(r)) for r ∈ S−j, (3.26)

R1,n(j)(3, r) =
n∑
i=2

(
ci−1P (X1,n = x1,n|Hi,n(r, j))

)
for r ∈ S−j, and

(3.27)

R1,n(j)(4, (r, s)) =
n∑
i=2

(
cnP (X1,n = x1,n|Hi,n(r, s))

)
for (r, s) ∈ S−j2.

(3.28)
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R1,n(j)(1, s), for s ∈ S−j, can be updated recursively as:

R1,n+1(j)(1, s) =
n+1∑
i=2

(
a(n+1)−i+1P (X1,n+1 = x1,n+1|Hi,n+1(j, s))

)
=

(
n∑
i=2

(
an−i+1P (X1,n = x1,n|Hi,n(j, s))

))
afs(xn+1)

+ aP (X1,n+1 = x1,n+1|Hn+1,n+1(j, s))

= R1,n(j)(1, s)afs(xn+1) + aP (X1,n = x1,n|H1,n(j))fs(xn+1). (3.29)

R1,n(j)(2, r), for r ∈ S−j, can be updated recursively as:

R1,n+1(j)(2, r) = cn+1P (X1,n+1 = x1,n+1|H1,n+1(r))

= (cnP (X1,n = x1,n|H1,n(r))) cfr(xn+1)

= R1,n(j)(2, r)cfr(xn+1). (3.30)

R1,n(j)(3, r), for r ∈ S−j, can be updated recursively as:

R1,n+1(j)(3, r) =
n+1∑
i=2

(
ci−1P (X1,n+1 = x1,n+1|Hi,n+1(r, j))

)
=

(
n∑
i=2

(
ci−1P (X1,n = x1,n|Hi,n(r, j))

))
fj(xn+1)

+ cnP (X1,n+1 = x1,n+1|Hn+1,n+1(r, j))

= R1,n(j)(3, r)fj(xn+1) + cnP (X1,n = x1,n|H1,n(r))fj(xn+1). (3.31)
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R1,n(j)(4, (r, s)), for (r, s) ∈ S−j2, can be updated recursively as:

R1,n+1(j)(4, (r, s)) =
n+1∑
i=2

(
cn+1P (X1,n+1 = x1,n+1|Hi,n+1(r, s))

)
=

(
n∑
i=2

(
cnP (X1,n = x1,n|Hi,n(r, s))

))
cfs(xn+1)

+ cn+1P (X1,n+1 = x1,n+1|Hn+1,n+1(r, s))

= R1,n(j)(4, (r, s))cfs(xn+1) + cn+1P (X1,n = x1,n|H1,n(r))fs(xn+1).

(3.32)

Thus, by storing the sums of terms of R1,n(j) in a vector, R1,n(j) can be updated

recursively using only the most recently observed sample, xn+1, the recursively tracked

likelihoods for the no-change hypotheses at time n, and the PDFs fr, for r ∈ S.



3.6. DETAILED RECURSIONS 41

3.6.3 Recursive Update of Rn,n(j, k), for (j, k) ∈ S2:

Rn,n(j, k)

=
π

P (X1,n = x1,n)

[ Rn,n(j,k)(1)︷ ︸︸ ︷
n−1∑
i=2

(
an−i+1P (X1,n = x1,n|Hi,n(j, k))

)
+

Rn,n(j,k)(2)︷ ︸︸ ︷
bP (X1,n = x1,n|H1,n(j))

+
∑

{s∈S−j−k}

(
n∑

i=2

(
bP (X1,n = x1,n|Hi,n(j, s))

)
︸ ︷︷ ︸

Rn,n(j,k)(3,s)

)

+
∑

{r∈S−j−k}

(
cnP (X1,n = x1,n|H1,n(r))︸ ︷︷ ︸

Rn,n(j,k)(4,r)

)
+ cn−1P (X1,n = x1,n|H1,n(k))︸ ︷︷ ︸

Rn,n(j,k)(5)

+
∑

{r∈S−j−k}

(
n∑

i=2

(
cn−1P (X1,n = x1,n|Hi,n(r, k))

)
︸ ︷︷ ︸

Rn,n(j,k)(6,r)

+

n∑
i=2

(
ciP (X1,n = x1,n|Hi,n(r, j))

)
︸ ︷︷ ︸

Rn,n(j,k)(7,r)

)

+

n∑
i=2

(
ciP (X1,n = x1,n|Hi,n(k, j))

)
︸ ︷︷ ︸

Rn,n(j,k)(8)

+
∑

{s∈S−j−k}

(
n∑

i=2

(
cnP (X1,n = x1,n|Hi,n(k, s))

)
︸ ︷︷ ︸

Rn,n(j,k)(9,s)

)

+
∑

{r∈S−j−k}

( ∑
{s∈S−j−k−r}

(
n∑

i=2

(
cnP (X1,n = x1,n|Hi,n(r, s))

)
︸ ︷︷ ︸

Rn,n(j,k)(10,(r,s))

))]

+ t

∑
{r∈S−j}

∏n−1
i=1 fr(xi)∑

{r∈S}
∏n−1

i=1 fr(xi)︸ ︷︷ ︸
Rn,n(j,k)(11)

, (3.33)
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where, for (r, s) ∈ S−j−k2,

Rn,n(j, k)(1) =
n−1∑
i=2

(
an−i+1P (X1,n = x1,n|Hi,n(j, k))

)
, (3.34)

Rn,n(j, k)(2) = bP (X1,n = x1,n|H1,n(j)), (3.35)

Rn,n(j, k)(3, s) =
n∑
i=2

(
bP (X1,n = x1,n|Hi,n(j, s))

)
, (3.36)

Rn,n(j, k)(4, r) = cnP (X1,n = x1,n|H1,n(r)), (3.37)

Rn,n(j, k)(5) = cn−1P (X1,n = x1,n|H1,n(k)), (3.38)

Rn,n(j, k)(6, r) =
n∑
i=2

(
cn−1P (X1,n = x1,n|Hi,n(r, k))

)
, (3.39)

Rn,n(j, k)(7, r) =
n∑
i=2

(
ciP (X1,n = x1,n|Hi,n(r, j))

)
, (3.40)

Rn,n(j, k)(8) =
n∑
i=2

(
ciP (X1,n = x1,n|Hi,n(k, j))

)
, (3.41)

Rn,n(j, k)(9, s) =
n∑
i=2

(
cnP (X1,n = x1,n|Hi,n(k, s))

)
, (3.42)

Rn,n(j, k)(10, (r, s)) =
n∑
i=2

(
cnP (X1,n = x1,n|Hi,n(r, s))

)
, and (3.43)

Rn,n(j, k)(11) = t

∑
{r∈S|r 6=j}

∏n−1
i=1 fr(xi)∑

{r∈S}
∏n−1

i=1 fr(xi)
. (3.44)



3.6. DETAILED RECURSIONS 43

Rn,n(j, k)(1) can be updated recursively as:

Rn+1,n+1(j, k)(1) =
n∑
i=2

(
a(n+1)−i+1P (X1,n+1 = x1,n+1|Hi,n+1(j, k))

)
=

(
n−1∑
i=2

(
an−i+1P (X1,n = x1,n|Hi,n(j, k))

))
afk(xn+1)

+ anP (X1,n+1 = x1,n+1|Hn,n+1(j, k))

= Rn,n(j, k)(1)afk(xn+1) + anP (X1,n = x1,n|H1,n(j))fk(xn+1).

(3.45)

Rn,n(j, k)(2) can be updated recursively as:

Rn+1,n+1(j, k)(2) = bP (X1,n+1 = x1,n+1|H1,n+1(j))

= (bP (X1,n = x1,n|H1,n(j))) fj(xn+1)

= Rn,n(j, k)(2)fj(xn+1). (3.46)

Rn,n(j, k)(3, s), for s ∈ S−j−k, can be updated recursively as:

Rn+1,n+1(j, k)(3, s) =
n+1∑
i=2

(
bP (X1,n+1 = x1,n+1|Hi,n+1(j, s))

)
=

(
n∑
i=2

(
bP (X1,n = x1,n|Hi,n(j, s))

))
fs(xn+1)

bP (X1,n+1 = x1,n+1|Hn+1,n+1(j, s))

= Rn,n(j, k)(3, s)fs(xn+1) + bP (X1,n = x1,n|H1,n(j))fs(xn+1).

(3.47)
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Rn,n(j, k)(4, r), for r ∈ S−j−k, can be updated recursively as:

Rn+1,n+1(j, k)(4, r) = cn+1P (X1,n+1 = x1,n+1|H1,n+1(r))

= (cnP (X1,n = x1,n|H1,n(r))) cfr(xn+1)

= Rn,n(j, k)(4, r)cfr(xn+1). (3.48)

Rn,n(j, k)(5) can be updated recursively as:

Rn+1,n+1(j, k)(5) = cnP (X1,n+1 = x1,n+1|H1,n+1(k))

=
(
cn−1P (X1,n = x1,n|H1,n(k))

)
cfk(xn+1)

= Rn,n(j, k)(5)cfk(xn+1). (3.49)

Rn,n(j, k)(6, r), for r ∈ S−j−k, can be updated recursively as:

Rn+1,n+1(j, k)(6, r) =
n+1∑
i=2

(
cnP (X1,n+1 = x1,n+1|Hi,n+1(r, k))

)
=

(
n∑
i=2

(
cn−1P (X1,n = x1,n|Hi,n(r, k))

))
cfk(xn+1)

+ cnP (X1,n+1 = x1,n+1|Hn+1,n+1(r, k))

= Rn,n(j, k)(6, r)cfk(xn+1) + cnP (X1,n = x1,n|H1,n(r))fk(xn+1).

(3.50)
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Rn,n(j, k)(7, r), for r ∈ S−j−k, can be updated recursively as:

Rn+1,n+1(j, k)(7, r) =
n+1∑
i=2

(
ciP (X1,n+1 = x1,n+1|Hi,n+1(r, j))

)
=

(
n∑
i=2

(
ciP (X1,n = x1,n|Hi,n(r, j))

))
fj(xn+1)

+ cn+1P (X1,n+1 = x1,n+1|Hn+1,n+1(r, j))

= Rn,n(j, k)(7, r)fj(xn+1) + cn+1P (X1,n = x1,n|H1,n(r))fj(xn+1).

(3.51)

Rn,n(j, k)(8) can be updated recursively as:

Rn+1,n+1(j, k)(8) =
n+1∑
i=2

(
ciP (X1,n+1 = x1,n+1|Hi,n+1(k, j))

)
=

(
n∑
i=2

(
ciP (X1,n = x1,n|Hi,n(k, j))

))
fj(xn+1)

+ cnP (X1,n+1 = x1,n+1|Hn+1,n+1(k, j))

= Rn,n(j, k)(8)fj(xn+1) + cnP (X1,n = x1,n|H1,n(k))fj(xn+1).

(3.52)
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Rn,n(j, k)(9, s), for s ∈ S−j−k, can be updated recursively as:

Rn+1,n+1(j, k)(9, s) =
n+1∑
i=2

(
cn+1P (X1,n+1 = x1,n+1|Hi,n+1(k, s))

)
=

(
n∑
i=2

(
cnP (X1,n = x1,n|Hi,n(k, s))

)
cfs(xn+1)

+ cn+1P (X1,n+1 = x1,n+1|Hn+1,n+1(k, s))

= Rn,n(j, k)(9, s)cfs(xn+1)

+ cn+1P (X1,n = x1,n|H1,n(k))fs(xn+1). (3.53)

Rn,n(j, k)(10, (r, s)), for (r, s) ∈ S−j−k2, can be updated recursively as:

Rn+1,n+1(j, k)(10, (r, s)) =
n+1∑
i=2

(
cn+1P (X1,n+1 = x1,n+1|Hi,n+1(r, s))

=

(
n∑
i=2

(
cnP (X1,n = x1,n|Hi,n(r, s))

)
cfs(xn+1)

+ cn+1P (X1,n+1 = x1,n+1|Hn+1,n+1(r, s))

= Rn,n(j, k)(10, (r, s))cfs(xn+1)

+ cn+1P (X1,n = x1,n|H1,n(r))fs(xn+1). (3.54)

Rn+1,n+1(j, k)(11) is calculated directly from likelihoods for hypotheses H1,n(r), r ∈

S.

Thus, by storing the sums of terms of Rn,n(j, k) in a vector, Rn,n(j, k) can be

updated recursively using only the most recently observed sample, xn+1, the recur-

sively tracked likelihoods for the no-change hypotheses at time n, and the PDFs fr,

for r ∈ S.
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3.6.4 Recursive Update of Rm′,n(j, k), for (j, k) ∈ S2:

Rm′,n(j, k)

=
π

P (X1,n = x1,n)

[ Rm′,n(j,k)(1)︷ ︸︸ ︷
m′−1∑
i=2

(
am
′−iP (X1,n = x1,n|Hi,n(j, k))

)
+

n∑
i=m′+1

(
bP (Xn

1 = xn1 |Hi,n(j, k))
)
+ bP (X1,n = x1,n|H1,n(j))︸ ︷︷ ︸

Rm′,n(j,k)(2)

+
∑

{s∈S−j−k}

(
m′∑
i=2

(
bP (X1,n = x1,n|Hi,n(j, s))

)
+

n∑
i=m′+1

(
bP (X1,n = x1,n|Hi,n(j, s))

)
︸ ︷︷ ︸

Rm′,n(j,k)(3,s)

)

+
∑

{r∈S−j−k}

(
cnP (X1,n = x1,n|H1,n(r))︸ ︷︷ ︸

Rm′,n(j,k)(4,r)

)
+ cm

′−1P (X1,n = x1,n|H1,n(k))︸ ︷︷ ︸
Rm′,n(j,k)(5)

+
∑

{r∈S−j−k}

(
m′∑
i=2

(
cm
′−1P (X1,n = x1,n|Hi,n(r, k))

)
+

n∑
i=m′+1

(
ci−1P (X1,n = x1,n|Hi,n(r, k))

)
︸ ︷︷ ︸

Rm′,n(j,k)(6,r)

+

m′∑
i=2

(
cn−m

′+1ci−1P (X1,n = x1,n|Hi,n(r, j))
)
+

n∑
m′+1

(
cnP (X1,n = x1,n|Hi,n(r, j))

)
︸ ︷︷ ︸

Rm′,n(j,k)(7,r)

)

+

m′∑
i=2

(
cn−m

′+1ci−1P (X1,n = x1,n|Hi,n(k, j))
)
+

n∑
m′+1

(
cn−i+1cm

′−1P (X1,n = x1,n|Hi,n(k, j))
)

︸ ︷︷ ︸
Rm′,n(j,k)(8)

+
∑

{s∈S−j−k}

(
m′∑
i=2

(
cnP (X1,n = x1,n|Hi,n(k, s))

)

+

n∑
m′+1

(
cn−i+1cm

′−1P (X1,n = x1,n|Hi,n(k, s))
)

︸ ︷︷ ︸
Rm′,n(j,k)(9,s)

)

+
∑

{r∈S−j−k}

( ∑
{s∈S−j−k−r}

(
n∑

i=2

(
cnP (X1,n = x1,n|Hi,n(r, s))

)
︸ ︷︷ ︸

Rm′,n(j,k)(10,(r,s))

))]

+ t

∑
{r∈S−j}

∏m′−1
i=1 fr(xi)∑

{r∈S}
∏m′−1

i=1 fr(xi)︸ ︷︷ ︸
Rm′,n(j,k)(11)

(3.55)
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where, for (r, s) ∈ S−j−k2

Rm′,n(j, k)(1) =

m′−1∑
i=2

(
am
′−iP (X1,n = x1,n|Hi,n(j, k))

)
, (3.56)

Rm′,n(j, k)(2) =

n∑
i=m′+1

(
bP (X1,n+1 = x1,n+1|Hi,n(j, k))

)
+ bP (X1,n = x1,n|H1,n(j)), (3.57)

Rm′,n(j, k)(3, s) =

m′∑
i=2

(
bP (X1,n = x1,n|Hi,n(j, s))

)
+

n∑
i=m′+1

(
bP (X1,n = x1,n|Hi,n(j, s))

)
, (3.58)

Rm′,n(j, k)(4, r) = cnP (X1,n = x1,n|H1,n(r)), (3.59)

Rm′,n(j, k)(5) = cm
′−1P (X1,n = x1,n|H1,n(k)), (3.60)

Rm′,n(j, k)(6, r) =

m′∑
i=2

(
cm
′−1P (X1,n = x1,n|Hi,n(r, k))

)
+

n∑
i=m′+1

(
ci−1P (X1,n = x1,n|Hi,n(r, k))

)
, (3.61)

Rm′,n(j, k)(7, r) =

m′∑
i=2

(
cn−m

′+1ci−1P (X1,n = x1,n|Hi,n(r, j))
)

+

n∑
m′+1

(
cnP (X1,n = x1,n|Hi,n(r, j))

)
, (3.62)

Rm′,n(j, k)(8) =

m′∑
i=2

(
cn−m

′+1ci−1P (X1,n = x1,n|Hi,n(k, j))
)

+

n∑
m′+1

(
cn−i+1cm

′−1P (X1,n = x1,n|Hi,n(k, j))
)
, (3.63)

Rm′,n(j, k)(9, s) =

m′∑
i=2

(
cnP (X1,n = x1,n|Hi,n(k, s))

)
+

n∑
m′+1

(
cn−i+1cm

′−1P (X1,n = x1,n|Hi,n(k, s))
)
, (3.64)

Rm′,n(j, k)(10, (r, s)) =

n∑
i=2

(
cnP (X1,n = x1,n|Hi,n(r, s))

)
, and (3.65)

Rm′,n(j, k)(11) = t

∑
{r∈S|r 6=j}

∏m′−1
i=1 fr(xi)∑

{r∈S}
∏m′−1

i=1 fr(xi)
. (3.66)
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Rm′,n(j, k)(1) can be updated recursively as:

Rm′,n+1(j, k)(1) =
m′−1∑
i=2

(
am
′−iP (X1,n+1 = x1,n+1|Hi,n+1(j, k))

)
= fk(xn+1)

(
m′−1∑
i=2

(
am
′−iP (X1,n = x1,n|Hi,n(j, k))

))

= Rm′,n(j, k)(1)fk(xn+1). (3.67)

Rm′,n(j, k)(2) can be updated recursively as:

Rm′,n+1(j, k)(2) =
n+1∑

i=m′+1

(
bP (X1,n+1 = x1,n+1|Hi,n+1(j, k))

)
+ bP (X1,n+1 = x1,n+1|H1,n+1(j))

= fk(xn+1)

(
n∑

i=m′+1

(
bP (X1,n = x1,n|Hi,n(j, k))

)
+ bP (X1,n = x1,n|H1,n(j))

)

+ bP (X1,n+1 = x1,n+1|H1,n+1(j))

= Rm′,n(j, k)(2)fk(xn+1) + bP (X1,n = x1,n|H1,n(j))fj(xn+1). (3.68)



3.6. DETAILED RECURSIONS 50

Rm′,n(j, k)(3, s), for s ∈ S−j−k, can be updated recursively as:

Rm′,n+1(j, k)(3, s) =
m′∑
i=2

(
bP (X1,n+1 = x1,n+1|Hi,n+1(j, s))

)
+

n+1∑
i=m′+1

(
bP (X1,n+1 = x1,n+1|Hi,n+1(j, s))

)
= fs(xn+1)

(
m′∑
i=2

(
bP (X1,n = x1,n|Hi,n(j, s))

)
+

n∑
i=m′+1

(
bP (X1,n = x1,n|Hi,n(j, s))

))

+ bP (X1,n+1 = x1,n+1|Hn+1,n+1(j, s))

= Rm′,n(j, k)(3, s)fs(xn+1)

+ bP (X1,n = x1,n|H1,n(j))fs(xn+1). (3.69)

Rm′,n(j, k)(4, r), for r ∈ S−j−k, can be updated recursively as:

Rm′,n+1(j, k)(4, r) = cn+1P (X1,n+1 = x1,n+1|H1,n+1(r))

= (cnP (X1,n = x1,n|H1,n(r))) cfr(xn+1)

= Rm′,n(j, k)(4, r)cfr(xn+1). (3.70)

Rm′,n(j, k)(5) can be updated recursively as:

Rm′,n+1(j, k)(5) = cm
′−1P (X1,n+1 = x1,n+1|H1,n+1(k))

=
(
cm
′−1P (X1,n = x1,n|H1,n(k))

)
fk(xn+1)

= Rm′,n(j, k)(5)fk(xn+1). (3.71)
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Rm′,n(j, k)(6, r), for r ∈ S−j−k, can be updated recursively as:

Rm′,n+1(j, k)(6, r) =
m′∑
i=2

(
cm
′−1P (X1,n+1 = x1,n+1|Hi,n+1(r, k))

)
+

n+1∑
i=m′+1

(
ci−1P (X1,n+1 = x1,n+1|Hi,n+1(r, k))

)
= fk(xn+1)

(
m′∑
i=2

(
cm
′−1P (X1,n = x1,n|Hi,n(r, k))

)
+

n∑
i=m′+1

(
ci−1P (X1,n = x1,n|Hi,n(r, k))

))

+ cnP (X1,n+1 = x1,n+1|Hn+1,n+1(r, k))

= Rm′,n(j, k)(6, r)fk(xn+1)

+ cnP (X1,n+1 = x1,n+1|H1,n(r))fk(xn+1). (3.72)

Rm′,n(j, k)(7, r), for r ∈ S−j−k, can be updated recursively as:

Rm′,n+1(j, k)(7, r) =
m′∑
i=2

(
c(n+1)−m′+1ci−1P (X1,n+1 = x1,n+1|Hi,n+1(r, j))

)
+

n+1∑
m′+1

(
cn+1P (X1,n+1 = x1,n+1|Hi,n+1(r, j))

)
= cfj(xn+1)

(
m′∑
i=2

(
cn−m

′+1ci−1P (X1,n = x1,n|Hi,n(r, j))
)

+
n∑

m′+1

(
cnP (X1,n = x1,n|Hi,n(r, j))

))

+ cn+1P (X1,n+1 = x1,n+1|Hn+1,n+1(r, j))

= Rm′,n(j, k)(7, r)cfj(xn+1)

+ cn+1P (X1,n+1 = x1,n+1|H1,n(r))fj(xn+1). (3.73)
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Rm′,n(j, k)(8) can be updated recursively as:

Rm′,n+1(j, k)(8) =
m′∑
i=2

(
c(n+1)−m′+1ci−1P (X1,n+1 = x1,n+1|Hi,n+1(k, j))

)
+

n+1∑
m′+1

(
c(n+1)−i+1cm

′−1P (X1,n+1 = x1,n+1|Hi,n+1(k, j))
)

= cfj(xn+1)

(
m′∑
i=2

(
cn−m

′+1ci−1P (X1,n = x1,n|Hi,n(k, j))
)

+
n∑

m′+1

(
cn−i+1cm

′−1P (X1,n = x1,n|Hi,n(k, j))
))

+ cm
′
P (X1,n+1 = x1,n+1|Hn+1,n+1(k, j))

= Rm′,n(j, k)(8)cfj(xn+1)

+ cm
′
P (X1,n = x11, n|H1,n(k))fj(xn+1). (3.74)

Rm′,n(j, k)(9, s), for s ∈ S−j−k, can be updated recursively as:

Rm′,n+1(j, k)(9, s) =
m′∑
i=2

(
cn+1P (X1,n+1 = x1,n+1|Hi,n+1(k, s))

)
+

n+1∑
m′+1

(
c(n+1)−i+1cm

′−1P (X1,n+1 = x1,n+1|Hi,n+1(k, s))
)

= cfs(xn+1)

(
m′∑
i=2

(
cnP (X1,n = x1,n|Hi,n(k, s))

)
+

n∑
m′+1

(
cn−i+1cm

′−1P (X1,n = x1,n|Hi,n(k, s))
))

+ cm
′
P (X1,n+1 = x1,n+1|Hn+1,n+1(k, s))

= Rm′,n(j, k)(9, s)cfs(xn+1)

+ cm
′
P (X1,n = x1,n|H1,n(k))fs(xn+1). (3.75)
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Rm′,n(j, k)(10, (r, s)), for (r, s) ∈ S−j−k2, can be updated recursively as:

Rm′,n+1(j, k)(10, (r, s)) =
n+1∑
i=2

(
cn+1P (X1,n+1 = x1,n+1|Hi,n+1(r, s))

)
=

(
n∑
i=2

(
cnP (X1,n = x1,n|Hi,n(r, s))

))
cfs(xn+1)

+ cn+1P (X1,n+1 = x1,n+1|Hn+1,n+1(r, s))

= Rm′,n(j, k)(10, (r, s))cfs(xn+1)

+ cn+1P (X1,n = x1,n|H1,n(r))fs(xn+1). (3.76)

Rm′,n(j, k)(11) is constant for fixed m′ and does not need to be updated.

Thus, by storing the sums of terms of Rm′,n(j, k) in a vector, Rm′,n(j, k) can be

updated recursively using only the most recently observed sample, xn+1, the recur-

sively tracked likelihoods for the no-change hypotheses at time n, and the PDFs fr,

for r ∈ S.

It should be noted that each of the recursions in Sections 3.6.2, 3.6.3, and 3.6.4 use

the likelihoods for the no-change hypotheses at time n (i.e. P (X1,n = x1,n|H1,n(r))

for r ∈ S) to calculate certain risk terms at time n + 1. These likelihoods are

recursively calculated at time n and stored individually for the recursive calculation

of π/P (X1,n = x1,n) in Section 3.6.1. If the recursions of the individual sums of terms

in Sections 3.6.2, 3.6.3, and 3.6.4 are calculated prior the common term π/P (X1,n =

x1,n), there is no need for extra memory to hold the old likelihoods for the no-change

hypotheses.
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Chapter 4

Performance Analysis

In Chapter 3, the sequential change detection problem for unknown initial state is

formulated using an optimal stopping approach based on Bayesian hypothesis testing

and a proposed cost structure. In this chapter, parameter bounds for the proposed

cost structure are developed. Under these parameter bounds, methods of character-

izing the initial transient performance of the test, i.e, when the number of samples

observed from the initial distribution is low and the probability of incorrectly identi-

fying the initial distribution is high. Additionally, various performance trade-offs are

highlighted which can be manipulated via parameter selection for the purpose of test

design.

4.1 Performance Metrics

As was discussed in Chapter 2, in previous approaches to quickest detection, different

performance metrics are used to characterize test performance depending on what

knowledge is assumed of the change time. In general, quickest detection formulations

seek an optimal trade-off between detection delay and the test’s likelihood of resulting

in a false alarm. Bayesian formulations assume that the change time is random and the
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prior distribution is known, and the optimal detector minimizes the average detection

delay subject to a constraint on the probability of false alarm. Conversely, minimax

formulations assume that the change time is either deterministic and unknown or

random with an unknown distribution. Without knowledge of the change time, the

average detection delay and probability of false alarm cannot always be calculated

since they depend on the change time in general. In this case, alternative metrics such

as Lorden’s worst-case detection delay and false alarm rate are used to characterize

performance. The false alarm rate’s inverse, termed as the average run length to false

alarm, is also often used as a measure of a test’s propensity to result in false alarms

when the change time is unknown.

In contrast to previous approaches to quickest detection, the change detection

scheme proposed in Chapter 3 is formulated using an optimal stopping approach based

on Bayesian hypothesis testing. In this formulation, it is assumed that the change time

is unknown. As such, in this chapter, the performance analyses related to detection

delay and false alarms will utilize metrics considered in minimax formulations.

For the problem of change detection under unknown initial state, we addition-

ally consider incorrect detection to indicate the event where either the initial, final,

or initial and final states are chosen incorrectly when a change is declared to have

occurred by the test. As will be discussed, as the number of samples observed from

the initial state increases, it is desirable for the proposed change detector to have an

asymptotically decreasing probability of incorrect detection from the initial state. A

sufficient condition for this to be achieved is if risks associated with hypotheses with

correct initial state converge, while risks corresponding to hypotheses with incorrect

initial state diverge towards infinity. In the following section, a method of calculating
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the expected value of risks will be calculated conditioned on a particular hypothesis

being true. These expected risks will then be used to develop parameter bounds to

ensure the aforementioned desirable test behaviour.

4.2 Expected Value of Risks

Recall that cost increases exponentially with the number of observations away from

the true change time m, where the base of the exponents are a and c. In this chap-

ter, bounds on parameter values will be established to ensure convergence of risks

corresponding to hypotheses with the correct initial state and divergence of risks cor-

responding to hypotheses with incorrect initial states. From the risk equations (3.8)

and (3.9) and Bayes rule, it can be noted that all risk terms excluding the initial

state uncertainty risk terms have a common factor of 1/P (X1,n = x1,n). To estab-

lish the parameter bounds, the expectation of all risks will be calculated with the

1/P (X1,n = x1,n) factor removed and then conditions will be identified for their con-

vergence and divergence. Once these conditions are established for the factored risks,

it will be shown that the conditions extend to the expectations of the risks as well.

Using conditional independence, taking expectations of the likelihoods (3.4) and

(3.5), for 1 < m1 ≤ n, 1 < m2 ≤ n, and (j, k), (r, s) ∈ S2 yields

EHm2,n(j,k)[P (X1,n|Hm1,n(r, s))]

=


∏m1−1

i=1 Ej[fr(Xi)]
∏m2−1

i=m1
Ej[fs(Xi)]

∏n
i=m2

Ek[fs(Xi)] for m1 < m2,∏m2−1
i=1 Ej[fr(Xi)]

∏m1−1
i=m2

Ek[fr(Xi)]
∏n

i=m1
Ek[fs(Xi)] for m1 > m2, and∏m1−1

i=1 Ej[fr(Xi)]
∏n

i=m1
Ek[fs(Xi)] for m1 = m2,

(4.1)
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where Ei[·], i ∈ S denotes expectation with respect to the distribution fi, and EH1[·]

denotes expectation with respect to the hypothesis H1. Considering the hypotheses

corresponding to no change additionally yields

EH1,n(j)[P (X1,n|Hm1,n(r, s))] =

m1−1∏
i=1

Ej[fr(Xi)]
n∏

i=m1

Ej[fs(Xi)], (4.2)

EHm2,n(j,k)[P (X1,n|H1,n(r))] =

m2−1∏
i=1

Ej[fr(Xi)]
n∏

i=m2

Ek[fk(Xi)], and (4.3)

EH1,n(j)[P (X1,n|H1,n(r))] =
n∏
i=1

Ej[fr(Xi)]. (4.4)

Rewriting (4.1)-(4.4) gives

EHm2,n(j,k)[P (X1,n|Hm1,n(r, s))]

=Wm2,n(j, k)


dj(r, j)

m1−1dj(s, j)
m2−m1dk(s, k)n−m2+1 for m1 < m2

dj(r, j)
m2−1dk(r, k)m1−m2dk(s, k)n−m1+1 for m1 > m2

dj(r, j)
m1−1dk(s, k)n−m1+1 for m1 = m2

(4.5)

EH1,n(j)[P (X1,n|Hm1,n(r, s))] = W1,n(j)dj(r, j)
m1−1dj(s, j)

n−m1+1 (4.6)

EHm2,n(j,k)[P (X1,n|H1,n(r))] = Wm2,n(j, k)dj(r, j)
m2−1dk(r, k)n−m2+1 (4.7)

EH1,n(j)[P (X1,n|H1,n(r))] = W1,n(j)dj(r, j)
n (4.8)
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where constants

W1,n(j)
∆
= EH1,n(j)[P (X1,n|H1,n(j))]

Wm2,n(j, k)
∆
= EHm2,n(j,k)[P (X1,n|Hm2,n(j, k))],

and

di(j, k) ≡ Ei [fj(X)]

Ei [fk(X)]
i, j, k ∈ S. (4.9)

We note in Eq. (4.9),

Lemma 1. For any set of distinct pdfs {fj|j ∈ S} such that 〈fj, fj〉 = 〈fk, fk〉 ∀j, k ∈

S, dj(j, k) > 1 and dj(k, j) < 1 for all (j, k) ∈ S2.

Proof. In (4.9), both the numerator and denominator take the form

Ei[fj(X)] =

∫ ∞
−∞

fj(x)fi(x)dx

= 〈fi, fj〉 i, j ∈ S. (4.10)

In the above, 〈fi, fj〉 denotes the inner product between the functions fi and fj. First,
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it will be shown that (j, k) ∈ S2,

dj(j, k) =
Ej[fj(X)]

Ej[fk(X)]

=
〈fj, fj〉
〈fj, fk〉

>
〈fj, fj〉√

〈fj, fj〉〈fk, fk〉

=

√
〈fj, fj〉√
〈fk, fk〉

(4.11)

where in the above the Cauchy-Schwarz inequality is used, and it is noted that

〈fj, fk〉 > 0 and 〈fj, fj〉 > 0 since both fj and fk are non-negative functions. It

should also be noted that the Cauchy-Schwarz inequality holds strictly without equal-

ity since fj and fk are distinct PDFs and are thus not linearly dependent. By letting

〈fj, fj〉 = 〈fk, fk〉 ∀(j, k) ∈ S2, it follows straightforwardly that dj(j, k) > 1. Showing

that dj(k, j) < 1 can be done similarly, noting that dj(k, j) = (dj(j, k))−1. �

While W1,n(j) and Wm,n(j, k) are treated as common factors in the following to

serve as fixed reference points, they are notably functions of the length of the test, n.

Taking the expectation of (3.8) with 1/P (X1,n) factored out over X1,n ∼

Hm,n(j, k), for 1 < m ≤ n, cost function (3.11)-(3.15), and (4.5)-(4.8) yields the
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expected risk

EHm,n(j,k)[Rm,n(j, k)P (X1,n)]

= πWm,n(j, k)

[
m−1∑
i=2

(adj(k, j))
m−i +

n∑
i=m+1

b(dk(j, k))i−m + b(dk(j, k))n−m+1

+
∑

{s∈S−j−k}

( m∑
i=2

bdj(s, j)
m−idk(s, k)n−m+1 +

n∑
i=m+1

bdk(j, k)i−mdk(s, k)n−i+1
)

+
∑

{r∈S−j−k}

(
cndj(r, j)

m−1dk(s, k)n−m+1
)

+ cm−1dj(k, j)
m−1

+
∑

{r∈S−j−k}

( m∑
i=2

cm−1dj(r, j)
i−1dj(k, j)

m−i
n∑

i=m+1

ci−1dj(r, j)
m−1dk(r, k)i−m

)
+

m∑
i=2

(cdj(k, j))
i−1(cdk(j, k))n−m+1 +

n∑
i=m+1

(cdj(k, j))
m−1(cdk(j, k))n−i+1

+
∑

{r∈S−j−k}

( m∑
i=2

(cdj(r, j))
i−1(cdk(j, k))n−m+1

+
n∑

i=m+1

cndr(j, r)
m−1dr(k, r)

i−mdk(j, k)n−i+1
)

+
∑

{s∈S−j−k{

( m∑
i=2

cndj(k, j)
i−1dj(s, j)

m−idk(s, k)n−m+1

+
n∑

i=m+1

(cdj(k, j))
m−1(cdk(s, k))n−i+1

)
+

∑
{r∈S−j−k}

( ∑
{s∈S−j−k−r}

( m∑
i=2

cndj(r, j)
i−1dj(s, j)

m−idk(s, k)n−m+1

+
n∑

i=m+1

cndj(r, j)
m−1dk(r, k)i−mdk(s, k)n−i+1

))]

+ E

[
P (X1,n)t

∑
{r∈S−j}

∏m′−1
i=1 fr(Xi)∑

{r∈S}
∏m′−1

i=1 fr(Xi)

]
(4.12)

which is comprised geometric series terms, each containing cost parameters and PDFs.



4.3. PARAMETER CHOICES FOR LARGE CHANGE TIMES 61

The initial state uncertainty risk term in the final line of (4.12) tends towards zero

asymptotically as m′ gets large, and thus it has little influence on the test for large

change times.

4.3 Parameter Choices for Large Change Times

To provide insight into the time sequential notions of correct and incorrect detection,

the first situation which will be considered is large change-time regime, where after

observing for a long time, the change has yet to occur. That is, in the following, it is

assumed that n→∞ while n−m remains finite, and thereby avoid situations where

an incorrect detection corresponds to a vanishingly small transient initial state, an

assumption consistent with the chosen cost structure. Observing (4.12), every term

involving an exponential cost is a product of terms of the form adr(s, r) or cdr(s, r)

for (r, s) ∈ S2. If we choose the parameters a and c to be such that each of these

individual terms is less than one, then each of the geometric series with exponential

costs will asymptotically converge. The terms which include the fixed cost of false

alarm, b, as a factor will converge to a finite value for any 0 < b < ∞. Thus, under

the large change-time regime, the expected risk Eq. (4.12) can be shown to converge

by choosing b <∞, t <∞, 1 < a < dmin, and 1 < c < dmin, where

dmin = min
{(r,s)∈S2}

dr(r, s). (4.13)

Note that dmin > 1 by Lemma 1 and recall that a > 1 and c > 1 are assumed in

the cost function definition. It can similarly be shown that choosing 1 < c < dmin

will result in the expected risks for hypotheses with incorrect initial state diverging

asymptotically by considering EHm,n(j,k) [Rm,n(p, q)P (X1,n)] for p 6= j. The process of
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calculating EHm,n(j,k) [Rm,n(p, q)P (X1,n)] for p 6= j is the same as was used to find Eq.

(4.12), however several of the geometric series terms including exponential costs of

incorrect detection will diverge exponentially with base c as n increases.

It will now be shown that if the expected value of the factored risk

E
[
Rm,n(j, k)P (X1,n)

]
converges or diverges, then E[Rm,n(j, k)] will also converge or

diverge respectively. Consider the covariance

Cov

[(
Rm,n(j, k)P (X1,n)

)
,

1

P (X1,n)

]
= E

[
Rm,n(j, k)

]
− E

[
Rm,n(j, k)P (X1,n)

]
E
[

1

P (X1,n)
)

]
. (4.14)

Using the Cauchy-Schwarz inequality, it is known that

Cov

[(
Rm,n(j, k)P (X1,n)

)
,

1

P (X1,n)

]
≤

√
Var [Rm,n(j, k)P (X1,n)] Var

[
1

P (X1,n)

]
,

(4.15)

which is finite so long as the variances of Rm,n(j, k)P (X1,n) and P (X1,n)−1 are finite.

Using Jensen’s inequality and the convex function 1/x for x > 0, it is also known that

E
[

1

P (X1,n)
)

]
≥ 1

E
[
P (X1,n)

] . (4.16)

In the above, the function P (X1,n) is finite for any realization x1,n of the random

sequence X1,n, and thus the left and right hand sides of (4.16) are a finite distance

apart. The expectation of P (X1,n) conditioned on Hm,n(j, k) being true can be cal-

culated similarly to Eq. (4.12) using (4.5)-(4.8) to be a product of Wm,n(j, k) and

a sum of geometric series terms. Using Lemma 1, it can be shown that the sum of
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geometric series terms converges, and thus EHm,n(j,k)[P (X1,n)] will be a finite distance

from Wm,n(j, k). Applying (4.16) to (4.14) yields

E
[
Rm,n(j, k)

]
≥ Cov

[(
Rm,n(j, k)P (X1,n)

)
,

1

P (X1,n)

]
+

E
[
Rm,n(j, k)P (X1,n)

]
E[P (X1,n)]

.

(4.17)

Noting that the inequality in (4.17) extends from the use of Jensen’s inequal-

ity in (4.16), it can be concluded that E[Rm,n(j, k)] is a finite distance from

E
[
Rm,n(j, k)P (X1,n)

]
(E[P (X1,n)])−1. Taking expectation over Hm,n(j, k), it can be

concluded that EHm,n(j,k) [Rm,n(j, k)] is finite. Alternatively, using (4.17) while tak-

ing expectation over Hm,n(p, q) for (p, q) ∈ S2 and j 6= p, it can be noted that

EHm,n(p,q) [Rm,n(j, k)P (X1,n)] diverges, and thus EHm,n(p,q) [Rm,n(j, k)] diverges as well.

Overall, so long as the D distributions each have finite variances, the following

conditions on the parameters

1 < a < dmin and 1 < c < dmin (4.18)

can be used to establish the following property for the procedure, (3.10), expressed

as

Theorem 1. Under the conditions (4.18), 0 < b <∞ and 0 < t <∞, the probability

of incorrect detection of the proposed procedure (3.10) converges to zero asymptotically

for the large change-time regime as the number of observations gets large.

Proof. Applying the conditions (4.18) to (4.12), at least one of the (n− 1) expected

risks corresponding to correct detection converge to a steady state. This means that

the minimum Bayes risk of correct detection in (3.10) must be bounded. Let its value
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be denoted by rmin < ∞. Consider the random variable (rmin − Rm,n(p, q))+, where

Rm,n(p, q) is the risk associated with choosing Hm,n(p, q), a hypothesis with incorrect

initial state, and (·)+ denotes max(·, 0). It follows from (4.18) that Rm,n(p, q) is a

diverging incorrect detection hypothesis. Applying Markov’s inequality,

P ((rmin −Rm,n(p, q))+ > ε) <
E [(rmin −Rm,n(p, q))+]

ε
(4.19)

for any ε > 0. Since E[Rm,n(p, q)] → ∞ under the large change-time regime, the

expectation on the right hand side vanishes as n → ∞ for any finite rmin. As any

positive probability on the left-hand side represents the probability that Rm,n(p, q) is

the minimum risk hypothesis, we see that the incorrect detection probability vanishes

to zero. �

Remark 1. Risks for hypotheses with incorrect initial state will stay large under the

large change-time regime after a change occurs. In fact, a larger value of c causes

incorrect-detection risks to diverge more quickly, reducing the probability of incorrect

detection. In addition, the time spent in an initial state where incorrect-detection

risks are small enough to incur an incorrect detection decrease as c increases.

4.4 Parameter Choices for Small Change Times

Theorem 1 is conditioned on the large change-time regime, i.e., each of the D!
(D−2)!

recursively tracked minimum-risk change times growing with n before a change oc-

curs, and is presented to justify the exponential cost structure. It is worth noting,

however, that the assumption of a large change-time regime is not valid in general. If

the parameters a and c are selected according to (4.18), then the recursively tracked
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change times for risks corresponding to hypotheses with incorrect initial state should

stay small since the algorithm identifies the minimum-risk hypothesis corresponding

to change in each direction. Consequently, if the recursively tracked change time is

small, then the asymptotic analysis leading to Theorem 1 does not apply. Addition-

ally, for small change times the exponential cost structure does not always associate

a large cost with incorrect detection, which is obviously undesirable. This motivates

the use of the initial state uncertainty cost, t, which provides a mechanism to address

the inherently large probability of incorrect detection for small change times.

For any particular risk corresponding to change, when the recursively tracked time

is small, only a small number of samples can be used to determine the initial state

of the sequence X1,n. The cost parameter t associates risk with only the initial state

samples of early change-time hypotheses to prevent incorrect detections caused by

this initial state uncertainty. As the number of initial state samples increases, the

risk vanishes for correct-sided risks corresponding to change and remains large for

incorrect-sided risks. Before proceeding, define fS−j
(X) = 1

D−1

∑
{r∈S−j} fr(X) as the

uniform linear combination of PDFs fr, for {r ∈ S−j}. The initial state uncertainty

risk component of the procedure, (3.10), is shown to have the following property:

Theorem 2. Under the conditions (4.18) and 0 < b < ∞, the following properties

hold:

(i) the probability of incorrect detection of the proposed test can be made arbitrarily

small by using a sufficiently large threshold t,



4.4. PARAMETER CHOICES FOR SMALL CHANGE TIMES 66

(ii) for change times

m ≥

1 +
log
(

t
Cm
− 1
)

+ log (D − 1)

DKL

(
fj||fS−j

)
 (4.20)

for some j ∈ S, where Cm is a finite constant, initial state uncertainty increases the

expected correct detection delay as O(log(t)), and

(iii) as

max
{(j,k)∈S2}

DKL(fj||fk)→ 0, (4.21)

initial state uncertainty increases expected delay as O(log(dmin)−1), where dmin is

given by (4.13).

Proof. Proof of (i): From Theorem 1, E [R1,n(j)|X1,n ∼ H1,n(j)] converges to a finite

value. For incorrect detection at time m, there exists Rm,n(p, q) < R1,n(j), for j ∈ S,

(p, q) ∈ S2, and p 6= j when H1,n(j) is true. Let C1
∆
= E [R1,n(j)|X1,n ∼ H1,n(j)] > 0.

Since the parameter values a and c follow (4.18) and b <∞, C1 <∞ ∀n ≥ 1. Using

(3.8) under H1,n(j), the all-fj hypothesis, an incorrect detection may only arise from

incorrect initial state fp when

C1 > t

∑
{r∈S−p}

∏m−1
i=1 fr(Xi)∑

{r∈S}
∏m−1

i=1 fr(Xi)
, or equivalently,

log

(
t

C1

− 1

)
< − log

(
m−1∏
i=1

fj(Xi)

fp(Xi)

)
− log

1 +
∑

{r∈S−p−j}

m−1∏
i=1

fr(Xi)

fj(Xi)

 , (4.22)

<

m−1∑
i=1

log

(
fp(Xi)

fj(Xi)

)
. (4.23)
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Eq. (4.23) follows from (4.22) since the omitted term (which only exists for D > 2)

is strictly less than zero. Let Yi ≡ log
(
fp(Xi)

fj(Xi)

)
and Y ≡

∑k−1
i=1 Yi. Since the sequence

{X1, X2, . . .} is IID, so is {Y1, Y2, . . .}. For any s > 0, the Chernoff bound yields

P

(
Y ≥ log

(
t

C1

− 1

))
≤

Ej
[
esY
]

e
s log

(
t

C1
−1

) (4.24)

where MY (s) ≡ Ej
[
esY
]

=
∏k−1

i=1 Ej
[
esYi
]

=
∏k−1

i=1 MYi(s) is the moment gen-

erating function (MGF) of Y . Since the sequence Yi for 1 ≤ i < m is IID,

MY (s) = (MYi(s))
m−1. Thus,

P

(
Y ≥ log

(
t

C1

− 1

))
≤

(
Ej
[(

fp(Xi)

fj(Xi)

)s])m−1

(
t
C1
− 1
)s s > 0 (4.25)

≤ max
1<m≤n

min
s>0

(
Ej
[(

fp(Xi)

fj(Xi)

)s])m−1

(
t
C1
− 1
)s , (4.26)

using recursively tracked change time, m ∈ {2, 3, . . . , n}, and minimizing over s > 0.

Observing Eq. (4.26), the numerator is greater than zero for any choice of s,

any pair fp and fj, and any m > 1. Taking all possible incorrect initial states into

account,

P ( incorrect detection |X1,n ∼ H1,n(j))

=P

 ⋃
{r∈S−j}

incorrect detection of initial state fr|X1,n ∼ H1,n(j)


≤

∑
{r∈S−j}

max
1<m≤n

min
s>0

(
Ej
[(

fp(Xi)

fj(Xi)

)s])m−1

(
t
C1
− 1
)s . (4.27)
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Thus, by choosing a value of t sufficiently large, the above upper bound can be made

arbitrarily small and Part (i) holds.

Proof of (ii):

From (3.19), denote risk associated with Hm,n(j, k) excluding initial state uncer-

tainty risk as

Rm,n(j, k)(delay)
∆
= Rm,n(j, k)− t

(∑
{r∈S−j}

∏m−1
i=1 fr(Xi)∑

{r∈S}
∏m−1

i=1 fr(Xi)

)
. (4.28)

For the initial state uncertainty risk to vanish among all correct-sided risks, we

require

Cm > t

∑
{r∈S−j}

∏m−1
i=1 fr(Xi)∑

{r∈S}
∏m−1

i=1 fr(Xi)
, (4.29)

where Cm
∆
= E[Rm,n(j, k)(delay)|H1,n(j) true]. Equivalently,

t

Cm
− 1 <

∏m−1
i=1 fj(Xi)∑

{r∈S−j}
∏m−1

i=1 fr(Xi)
,

=
1

D − 1

( ∏m−1
i=1 fj(Xi)

1
D−1

∑
{r∈S−j}

∏m−1
i=1 fr(Xi)

)
,

=
1

D − 1

(
fm−1
j (X1,m−1)

fm−1
S−j

(X1,m−1)

)
. (4.30)

Therefore,

log

(
t

Cm
− 1

)
+ log (D − 1) < log

(
fm−1
j (X1,m−1)

fm−1
S−j

(X1,m−1)

)
. (4.31)
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Taking the expectation of (4.31) conditioned on H1,n(j) being true yields

log

(
t

Cm
− 1

)
< log

(
1

D − 1

)
+ Ej

[
log

(
fm−1
j (X1,m−1)

fm−1
S−j

(X1,m−1)

)]
, (4.32)

where

Ej

[
log

(
fm−1
j (X1,m−1)

fm−1
S−j

(X1,m−1)

)]
=

m−1∑
i=1

Ej
[
log

(
fj(Xi)

fS−j
(Xi)

)]
= (m− 1)Ej

[
log

(
fj(Xi)

fS−j
(Xi)

)]
.

≥ 0. (4.33)

In (4.33), Ej
[
log
(

fj(Xi)

fS−j
(Xi)

)]
is the Kullback-Leibler divergence DKL

(
fj||fS−j

)
. Using

(4.33) and (4.32), Eq. (4.20) follows.

The expected risks R1,n(j) and Rm,n(j, k) will be observed following a change at

time m. Without loss of generality, it is assumed that the recursively tracked change

time is the actual change time. Detection delay is defined as the difference n − m

following the stopping rule being invoked for a detection of a change in the correct

direction. Ignoring the influence of incorrect-sided risks, the stopping rule is invoked

when

R1,n(j) > Rm,n(j, k). (4.34)

The expectation of the right hand side of (4.34) is given by (4.12), and has been

shown to converge to a finite value. Taking the expectation of the left hand side of
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(4.34),

E[R1,n(j)|X1,n ∼ Hm,n(j, k)]

= πWm,n(j, k)

[
an−m+1

(
m−1∑
i=2

(adj(k, j))
m−i

)
+

n∑
i=m

an−i+1dk(j, k)i−m

+
∑
{s∈S−k}

(
m−1∑
i=2

an−i+1dj(s, j)
m−idk(s, k)n−m+1 +

n∑
i=m

an−i+1dk(j, k)i−mdk(s, k)n−i+1

)

+
∑
{r∈S−j}

(
cndj(r, j)

m−1dk(r, k)n−m+1

+
m−1∑
i=2

ci−1dj(r, j)
i−1dk(j, k)n−m+1 +

n∑
i=m

ci−1dj(r, j)
m−1dk(r, k)i−mdk(j, k)n−i+1

+
∑

{s∈S−j−k}

(
m−1∑
i=2

cndj(r, j)
i−1dj(s, j)

m−idk(s, k)n−m+1

+
n∑

i=m

cndj(r, j)
m−1dk(r, k)i−mdk(s, k)n−i+1

)

+ cn−m+1

m−1∑
i=2

cm−1dj(r, j)
i−1dj(k, j)

m−i +
n∑

i=m

cndj(r, j)
m−1dk(r, k)i−m

)]
, (4.35)

which contains terms that increase exponentially with base a following the change at

time m.

The average detection delay is the smallest n−m > 0 satisfying the expectation

of (4.34) conditioned on Hm,n(j, k). It can be shown that for n > m, Wm,n(j, k)

converges to a finite value. Observing (4.12), it can be seen that following a change

at time m, E[Rm,n(j, k)|Hm,n(j, k) true] converges to a finite value for n > m. For

fixed m, the risk associated with initial state uncertainty is constant as n increases.

From (4.35), E[R1,n(j)|Hm,n(j, k) true] has terms which increase exponentially with

n with base a. Thus, since average detection delay is the number of samples after
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change time m for E[R1,n(j)|Hm,n(j, k) true] to surpass E[Rm,n(j, k)|Hm,n(j, k) true],

the initial state uncertainty cost t increases the average detection delay by, on average,

log
(
t
(
1 + 1

D−1
exp((m− 1)DKL(fj||fS−j

))
)−1
)

log (dmin)
, (4.36)

where the denominator in (4.36) is determined by the largest possible value for param-

eter a satisfying (4.18), Thus, average detection delay increases O(log(t)), establishing

(ii).

Proof of (iii): Additionally, under (4.21), initial state uncertainty risk increases

average detection delay, and it can be shown that dmin → 1. Again, considering

the increase in average detection delay resulting from initial state uncertainty risk,

under (4.21), the numerator of (4.36) approaches the constant log(t(D−1
D

)). Thus,

delay caused by the initial state uncertainty risk increases O(log(dmin)−1), establishing

(iii). �

Remark 2. The choice of parameter t allows trading off the probability of incor-

rect detection with the ability to detect changes occurring prior to some minimum

detectable change time.

In Theorem 2, the minimum change time (4.20) is used to quantify performance

trade-offs; however, the absolute value of this minimum change time is not useful for

test design purposes since it is simply the average number of samples from the initial

state required for (4.29) to occur, i.e, for the initial state uncertainty risk to vanish

among other risk terms. An alternative approach would be to find the probability

that (4.29) occurs as a function of the the change time, m. Using (4.31), it is desired
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to find the smallest m such that

PH1,m−1(j)

(
log

(
fm−1
j (X1,m−1)

fm−1
S−j

(X1,m−1)

)
> log

(
t

Cm
− 1

)
+ log (D − 1)

)
> 1− α, (4.37)

where 0 ≤ α ≤ 1 is small. Since the sequence X1,m−1 is IID, (4.37) can equivalently

be written as

PH1,m−1(j)

(
m−1∑
i=1

log

(
fj(Xi)

fS−j
(Xi)

)
< log

(
t

Cm
− 1

)
+ log (D − 1)

)
< α. (4.38)

The minimum change time for initial state uncertainty to affect average detection

delay with probability α is the smallest m satisfying (4.38). As α → 0, the increase

in this delay due to initial state uncertainty vanishes. To compute the minimum m

satisfying (4.38), knowledge of the cumulative distribution function of log
(

fj(Xi)

fS−j
(Xi)

)
conditioned on H1,m−1(j) is required. To avoid this, the increase in the average

detection delay due to initial state uncertainty risk is instead quantified in the proof

of Theorem 2.

4.5 Detection Delay and False Alarm

It is worth further investigating the correct-sided risks for finite n under the condi-

tions (4.18). Interpreting Eq. (4.12) and Eq. (4.35), it can be noted that increasing

parameter b for fixed a and c can serve as a mechanism to increase the average run

length to false alarm as well as lower the probability of incorrect detection. Increas-

ing the average run length to false alarm in turn decreases the detector’s false alarm

rate. We note that under correct detection hypotheses, in view of the terms including

cost parameter b in Eq. (4.12) and dk(j, k) < 1, false alarms are controlled by the
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added risk (which incurs added detection delay). Therefore, the combination of a

large b value with values of a and c which satisfy Theorem 1 can be used to enable

finite-sample performance tradeoffs of detection error probabilities and delay.

Following from Theorem 2, on average, there exists a minimum change time, m,

where the correct-sided initial state uncertainty risk vanishes, and it can be expressed

directly in terms of the cost parameters and distributions fr, for {r ∈ S}. By defini-

tion, Cm in (4.20) is not a function of cost parameter t, and so (4.20) shows that as

t is increased, this minimum change time only increases logarithmically, which indi-

cates insensitivity to delay penalty. Taking (4.26) into account, it can be concluded

that increasing t to reduce the probability of incorrect detection would incur only a

modest effect on delay in correct detection.
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Chapter 5

Simulation Results and Discussion

In this chapter, the performance of the change detection scheme proposed in Chapter 3

is evaluated using Monte Carlo simulations. The performance analyses from Chapter 4

are illustrated by the observed results from the simulations. Additionally, for the case

where the probability of incorrect detection is low, the performance of the proposed

change detector is compared to that of CUSUM, the optimal change detector for the

case where the initial state is known.

5.1 Simulation Description

To illustrate Theorem 2, Monte Carlo simulations were performed to observe the per-

formance of the proposed change detection scheme when the initial state uncertainty

cost t is changed. For this test, the case where D = 2 is considered, and the objective

is to detect a change in the mean of a Gaussian distribution. PDFs f0 and f1 are

defined, respectively, as

f0 = N (0, σ2)

f1 = N (µ, σ2)
(5.1)



5.1. SIMULATION DESCRIPTION 75

where µ is the mean shift corresponding to the change in distribution observed and

σ2 is the variance of the Gaussian distribution. The use of D = 2 is sufficient for

the purposes of illustrating Theorem 2, as Theorem 2 presents performance bounds

concerned with the initial state uncertainty risk, and alternative initial states occur

for any D ≥ 2. The signal-to-noise ratio (SNR) is defined as SNR ≡ µ2/σ2. With

f0 and f1 defined, from (4.9) and (4.13) it can be determined that dmin = d0(0, 1) =

d1(1, 0) = eSNR/4. µ = 1 and σ2 = 1 are chosen to have an SNR of 0dB, which yields

dmin = 1.2840. To satisfy the conditions (4.18) for Theorem 1 to be valid, parameter

values a = 1.05 and c = 1.25 are chosen to associate a larger cost with incorrect

detection than detection delay. A cost of false alarm of b = 101.85 is chosen, using

the trade-off between the average detection delay and false alarm rate discussed in

Section 4.5, to achieve a false alarm rate of approximately 0.05 when the change time

is m = 50 and the initial state uncertainty cost is t = 0. The initial state uncertainty

cost t is varied from 101 to 107, and for each value of t, the performance of the test

is simulated using 106 Monte Carlo trials for changes times varying from 5 to 100

in increments of 5 to illustrate how the initial state uncertainty cost influences the

probability of incorrect detection from initial state and the average detection delay.

For each trial, the initial state of the sequence is random, and assumes either f0 or

f1 with equal probability.

The results from these simulations are presented in Section 5.2. In Section 5.2.1,

the performance bound on the probability of incorrect detection presented in Theorem

2 is compared with the observed results. In Section 5.2.2, the average detection delay

trends discussed in Theorem 2 and Section 4.5 are compared with the simualtions

results. Finally, in Section 5.3 the results of the simulations and their implications
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are discussed.

An obvious comparison for the proposed change detection scheme is using a fixed

sample size (FSS) hypothesis test (HT) to detect the initial state of the observed

sequence. Once the initial state of the sequence is identified, a traditional change

detection scheme, i.e. one that assumes knowledge of the initial state, such as Page’s

CUSUM, could be used. In this approach choosing the length of the FSS HT requires

knowledge of the change time, which is unrealizable and is only used for benchmarking

purposes. For reference, in Section 5.2, the incorrect initial state detection probabil-

ity of the FSS HT and the average detection delay and false alarm rate of CUSUM

are presented alongside that of the proposed change detection scheme. For the FSS

HT, the incorrect detection rate shown assumes that the change time is known, so

the length of the FSS HT is chosen to be the change time minus one. For CUSUM,

the threshold was chosen to be 4.967 to achieve approximately the same ARL to false

alarm as was achieved by the proposed change detection scheme for the parameter

values chosen to ensure a fair comparison. This threshold for the CUSUM proce-

dure was determined empirically by leveraging the performance trade-offs explored

in Section 2.3.1. Specifically, recall that that the ARL to false alarm monotonically

increases with the CUSUM threshold β > 0. An empirically measured ARL to false

alarm can be calculated as the rate at which the frequency of false alarms increases as

the change time is increased. As such, the CUSUM threshold which achieves a certain

ARL to false alarm can be estimated using an iterative search based on simulation

data.
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5.2 Results

For the PDFs (5.1) and parameter values selected in Section 5.1, Figures 5.1, 5.2, and

5.3 show the average detection delays, incorrect detection rates, and the frequency of

false alarms, respectively, achieved by the proposed change detection scheme in the

Monte Carlo simulation.

From Figure 1 it is clear that the average detection delay increases at any change

time when the initial state uncertainty cost is increased, which is consistent with

Theorem 2. When the change time is small, the average detection delay of the test

for all t > 0 is much larger than the average detection delay for t = 0. However, as the

change time increases, the average detection delay of the sequential change detectors

for t > 0 approaches that of the t = 0 change detector. Additionally, it can be noted

that the average detection delay of the proposed change detection scheme once the

initial transient behaviour subsides is only slightly greater than that of CUSUM, which

is known to be optimal in the sense that it achieves the minimum average detection

delay for a given maximum false alarm rate. Based on the simulation results, the

average detection delay of CUSUM is 8.586, while the average detection delay of the

proposed change detection scheme once the initial state is established is 8.903, which

is 3.69 % larger.

Observing Figure 2, it is clear that for each value of t, there is a minimum prob-

ability of incorrect detection which can be achieved. As the value of t is increased,

this minimum probability of incorrect detection decreases; however, increasing t also

increases the minimum change time for which a certain incorrect detection rate can be

achieved. These results are consistent with the analyses presented in Theorem 2. For

example, when t = 103 is used, an incorrect detection rate of approximately 2× 10−5
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Figure 5.1: Average detection delay versus change time for various initial state un-
certainty costs, t. The PDFs f0 and f1 are defined in (5.1) to indicate a
change in the mean of a Gaussian distribution. Also shown is the aver-
age detection delay for CUSUM for the case where the initial and final
states are assumed known. Parameter values are a = 1.05, c = 1.25, and
b = 101.85, and CUSUM’s threshold is 4.967. Simulated using 106 Monte
Carlo trials.
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Figure 5.2: Incorrect detection rate versus change time for various initial state un-
certainty costs, t. The PDFs f0 and f1 are defined in (5.1) to indicate
a change in the mean of a Gaussian distribution. Also shown is the in-
correct detection probability of a fixed sample size hypothesis test of the
initial distribution of a sequence assuming a known change time of m.
Parameter values are a = 1.05, c = 1.25, and b = 101.85. Simulated using
106 Monte Carlo trials.
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Figure 5.3: Frequency of false alarms versus change time for various initial state un-
certainty costs, t. The PDFs f0 and f1 are defined in (5.1) to indicate a
change in the mean of a Gaussian distribution. Also shown in the false
alarm rate of CUSUM, whose threshold is chosen such that CUSUM’s
ARL to false alarm is approximately that of the proposed change detec-
tion scheme. Parameter values are a = 1.05, c = 1.25, and b = 101.85,
and the threshold used for CUSUM is 4.967. Simulated using 106 Monte
Carlo trials.
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is achieved and it reaches this minimum at a change time of approximately 45. When

t = 0 is used, an incorrect detection rate floor of approximately 1.3× 10−3 is achieved

and it reaches this floor at a change time of 15. These results clearly illustrate the

trade-off which exists between the probability of incorrect detection from initial state

and the test’s ability to detect small change times. Comparing the proposed change

detection scheme’s incorrect initial state detection rate to that of the FSS HT, it can

be noted that at each change time there is a parameter value for t for the proposed

test which achieves a lower incorrect detection rate than the FSS HT. However, there

is no value of t which is universally better than using the FSS HT.

Figure 3 shows the frequency of false alarms which the proposed change detection

scheme achieves for various parameter values of t. From Figure 3, it is clear that

following the initial transient behaviour of the test during which the initial state is

established, the frequency of false alarms increases linearly with the change time.

Being consistent with Theorem 2, the duration of this initial transient behaviour

increases with the parameter value t. It can also be noted that, following the initial

transient behaviour, the rate at which the frequency of false alarms increases with

the change time is approximately the same for every value of t, which indicates that

the parameter t has no effect on the ARL to false alarm of the test. Recalling that

the increase in the average detection delay caused by the initial state uncertainty risk

vanishes following the initial transient behaviour of the test, we conclude that the

initial state uncertainty risk does not affect the trade-off between the probability of

false alarm and average detection delay.

It can be noted that the rate at which the frequency of false alarms increases for

both CUSUM and the proposed change detector are approximately the same. This
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was intended, as it was desired for both tests to have approximately the same ARL to

false alarm for benchmarking purposes. It should be noted that Figure 3 presents the

frequency of false alarms of CUSUM under the assumption that the initial and final

states are known. To compare the false alarm rates of CUSUM to that of the proposed

change detection scheme, the duration and the outcome of the FSS HT would need to

be considered. The inclusion of the false alarm rates for CUSUM in Figure 3 is simply

to illustrate the reasoning for which the CUSUM threshold of 102.157 was selected for

the comparison.

5.2.1 Incorrect Detection

In this section, the results presented in Figures 5.1 and 5.2 are cross referenced with

the performance bounds presented in the proof of Theorem 2. From Figure 5.2,

it is clear that once the initial state of the sequence is observed for long enough,

each value of t reaches a minimum probability of incorrect detection from initial

state. Furthermore, as t is increased, this minimum probability of incorrect detection

decreases. Eq. (4.27) is formulated as an upper bound on the probability of incorrect

detection from initial state. For the case of D = 2 with f0 and f1 defined as in (5.1),

|S−j| = 1. Furthermore, since the PDFs are symmetrical about µ/2 (i.e. f0(x−µ/2) =

f1(x+µ/2)), the performance of the test is the same regardless of whether f0 or f1 is

the initial state. Without loss of generality we proceed by using (4.27) and j = 0 to

calculate the upper bound of the probability of incorrect detection. From the previous

arguments, for the PDFs f0 and f1 defined, the upper bound on the probability of
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incorrect detection from initial state is

P (incorrect detection from initial state) ≤ max
1<m≤n

min
s>0

(
E1

[(
f0(Xi)
f1(Xi)

)s])m−1

(
t
C1
− 1
)s . (5.2)

Using the PDFs f0 and f1, we find

E1

[(
f0(Xi)

f1(Xi)

)s]
= exp

(
s(s− 1)

2

µ2

σ2

)
. (5.3)

The value of C1 is found to be approximately 1.05 by taking an average of R1,n(0) over

2 ≤ n ≤ 500 for R1,500(0) true over 103 Monte Carlo trials. With this value of C1 and

(5.3), (5.2) can be found for a given value of t using two 1-dimensional searches. For

values of t of 101, 103, 105, and 107, the upper bounds on the probability of incorrect

detection were found to be 1.15× 10−1, 1.00× 10−3, 1.05× 10−5, and 1.05× 10−7

respectively. Comparing these values with the achieved probabilities of incorrect

detection in Figure 5.2, it is clear that the upper bound (4.27) is greater than each of

the achieved probabilities of incorrect detection from initial state; however, the bound

is clearly loose as the achieved floor probabilities for incorrect detection for t = 101

and t = 103 are approximately 3× 103 and 2× 102 times smaller, respectively, than

their upper bounds. This was expected, as the condition which was used to formulate

(4.27) considers only the initial state uncertainty cost t, while for the proposed change

detector the exponential cost of incorrect detection is also used to prevent incorrect

detections.



5.2. RESULTS 84

5.2.2 Delay and False Alarm

In the proof of Theorem 2, methods of identifying the minimum change time for the

initial state uncertainty risk to insignificantly increase delay were explored. Specif-

ically, Eq. (4.38) is the probability that the initial state uncertainty risk is larger

than the expected risk C1 for a certain value of m, which would result in additional

expected delay. It is desired to find the smallest m such that the probability (4.38) is

smaller than some small value α. Using the PDFs f0 and f1 defined, at can be found

that

m−1∑
i=1

log

(
f0(Xi)

fS−0(Xi)

)
=

m−1∑
i=1

log

(
f1(Xi)

f0(Xi)

)
,

=
m−1∑
i=1

log

 1√
2πσ2

exp
(
−(Xi−µ)2

2σ2

)
1√

2πσ2
exp

(
−(Xi)2

2σ2

)
 ,

=
m−1∑
i=1

X2
i

2σ2
− (Xi − µ)2

2σ2
,

=
m−1∑
i=1

2Xiµ− µ2

2σ2
,

=
µ

σ2

m−1∑
i=1

Xi −
(m− 1)µ2

2σ2
. (5.4)

Noting that X1,m−1 is distributed according to H1,m−1(1), each of the Xi’s in (5.4)

are IID and distributed according to f1. As such,
∑m−1

i=1 Xi is Gaussian with mean

(m−1)µ and variance (m−1)σ2, and (5.4) is Gaussian with mean (m−1)µ2

2σ2 and variance
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(m−1)µ2

σ2 . Thus, (4.38) can be equivalently written as

1−Q

 log
((

t
Cm
− 1
)

(D − 1)
)
− (m−1)µ2

2σ2

√
(m−1)µ

σ

 < α. (5.5)

By selecting a small value of α, (5.5) can be used to find the minimum change time

m for the initial state uncertainty risk to have an insignificant effect on the average

detection delay. α = 10−3 is chosen and Cm = 4 is found by calculating the average

values of Rm′,n(0, 1)(delay) over 2 ≤ n ≤ 500 over 103 Monte Carlo simulation trials.

For values of t of 101, 103, 105, and 107, Eq. (5.5) yields minimum change times of

40.80, 59.17, 74.09, and 88.17 respectively. Interpolating linearly between data points

of the average detection delay plot in Figure 5.1, the minimum change times for values

of t of 101, 103, 105, and 107 yield average detection delays of 9.261, 9.123, 9.115, and

9.106 respectively. The change detector for t = 0 achieves an average detection delay

of 8.903 over change times of 20 through 100. As such, by using Eq. (4.38) with

α = 10−3 yields minimum change times which will ensure that the average detection

delay is within 4.02%, 2.48%, 2.38%, and 2.28% of the minimum average detection

delay for t of 101, 103, 105, and 107 respectively. Additionally, it can be observed by

cross referencing with Figure 5.2 that, for each value of t, the incorrect detection rate

achieved at the minimum change time calculated using (5.5) is equal to the minimum

incorrect detection rate achievable for that value of t. As such, (4.38) provided an

effective method of identifying the duration of the initial transient behaviour of the

test, during which increased average detection delay and an increased probability of

incorrect detection are observed.
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5.3 Discussion

Using Monte Carlo simulations, the performance bounds and trade-offs presented

in Theorem 2 have been illustrated. Specifically, it is shown that the initial state

uncertainty cost t exhibits a trade-off between the probability of incorrect detection

from initial state and a minimum change time for which changes can be detected

without an average detection delay penalty. Furthermore, it has been shown that

once the minimum change time has been passed, the initial state uncertainty risk

tends asymptotically to zero for risks corresponding to the correct initial state and

thus does not affect the trade-off between the probability of false alarm and the

average detection delay.

It is worth discussing the selection of the parameters a, b, and c. Given the

complexity of the cost structure used, it is infeasible to jointly optimize the parameter

values a, b, and c; however, it has been shown that once the initial transient behavior

is completed, the proposed change detection scheme can achieve detection delays

close to that of CUSUM, which is optimal for the case where the initial state is

known. Furthermore, it can be noted that for any parameter value of t chosen, there

is a range of change times where the proposed change detector outperforms the FSS

HT, which assumes full knowledge of the change time, in terms of the correct initial

state detection probability. This can be attributed to the proposed change detector

recursively tracking the minimum risk change time for each state pair (r, s) ∈ S2,

whereas the FSS HT assumes an IID sequence prior to the change occurring and

ignores the temporal behaviour of the observed samples prior to the change.
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Chapter 6

Summary and Conclusions

6.1 Summary

Quickest detection is a class of detection problem whereby the objective is to identify,

as quickly as possible, when a change in distribution occurs in a sequence of random

variables. There are a number of real world problems which can be modeled as

quickest detection problems, and as such, various distinct formulations have been

considered for different sets of assumptions. However, a common assumption among

previous quickest detection formulations is that the initial distribution of the sequence

is known a priori. In Chapter 1, the problem of sequential change detection under the

assumption of unknown initial state is introduced. Additionally, spectrum sensing is

discussed as a potential application to motivate the aforementioned problem.

In Chapter 2, a brief summary of existing quickest detection formulations is given

to provide context for the problem addressed later in this thesis. Specifically, the

Bayesian formulation and Lorden’s minimax formulation of the quickest detection

problem are covered to reveal the fundamental metrics considered when evaluating

the performance of sequential change detectors. Page’s CUSUM procedure, which is
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optimal by Lorden’s criterion, is described in detail and its algorithm is tabulated in

detail for reference, as it is later used as a benchmark. A brief analysis of the CUSUM

procedure is performed to reveal desirable properties of a change detector for the case

where the change time is assumed to be unknown.

In Chapter 3, a problem formulation for a novel quickest detection problem is

constructed. The problem of identifying an abrupt change in distribution in a ran-

dom sequence in absence of knowledge of the initial distribution of the sequence

is described in detail. The problem is then formulated using an optimal stopping

framework based on Bayesian hypothesis testing. A time-varying exponential cost

structure is proposed, which is shown to yield a sequential change detector which

can be executed with constant computational complexity over time by using a recur-

sive algorithm, which is described in detail. An example is provided to illustrate the

proposed sequential detector.

In Chapter 4, the performance of the proposed sequential change detector is char-

acterized analytically. First, parameter bounds are developed to ensure the desired

behaviour from the change detector. Asymptotic and finite sample properties are

derived. These analyses characterize the change detector’s ability to correctly discern

the initial distribution of the sequence over the full range of possible change times.

The proposed test is then characterized in terms of its expected detection delay and

propensity to result in false alarms. Throughout the chapter, key performance trade-

offs are highlighted to facilitate with the design of test parameters.

In Chapter 5, the performance of the proposed sequential change detector is evalu-

ated using Monte Carlo simulations. The results from the simulations are interpreted

in terms of the Theorems presented in Chapter 4. Additionally, the results are used to
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benchmark the performance of the proposed change detector against that of CUSUM.

6.2 Conclusions

In this thesis, a sequential change detector is proposed for the problem of identifying

a single abrupt change in distribution in an observed sequence when neither the initial

or final distributions are known. Specifically, it is assumed that both the initial and

final distributions of the sequence each belong to a set of D distinct distributions,

but it is unknown which of the D distributions are the initial and final distributions.

The problem is approached using as an optimal stopping problem, where Bayesian

hypothesis testing is used as a framework to associate risk with deciding whether or

not a change has occured. The sequential change detection scheme was first proposed

in [5] for the case whereD = 2 only. The change detector proposed in [5] was improved

upon in [6] with the inclusion of the initial state uncertainty costs, which provided a

mechanism for associating a larger cost with incorrectly selecting the initial state of

the sequence. This thesis addresses a generalization of the change detector presented

in [6] where there are D ≥ 2 distributions which the sequence may assume both before

and after the change.

Under suitable parameter choices, the proposed change detector is shown analyt-

ically to exhibit behaviour which mimics CUSUM after the initial transient period

where the initial state uncertainty risk is dominant. If parameter values are chosen

to satisfy the convergence and divergence criteria (4.18) for the expected risks, then

the proposed change detector achieves a fixed average run length to false alarm and

achieves a finite expected detection delay for finite cost choices. As was discussed in

the analysis of CUSUM in Section 2.3.1, these are desirable properties for a change
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detector when the change time is assumed to be unknown. Additionally, the test

exhibits a performance trade-off under correct detection inspired by Lorden’s mini-

max formulation of the change detection problem for the case where the initial and

final states of the observed sequence are known. That is, parameter selection can

be used to trade-off the false alarm rate with the expected detection delay. While

joint optimization of detection delay and false alarm costs is generally infeasible, it

has been shown using Monte Carlo simulations that the proposed change detector

achieves average detection delays very close to those achieved by CUSUM, which is

optimal by Lorden’s criterion, when both tests are designed to achieve the same false

alarm rate.

The probability of the proposed change detector incorrectly identifying the initial

distribution of the sequence can be made arbitrarily low by increasing the initial state

uncertainty cost. However, increasing the initial state uncertainty cost to lower the

probability of incorrect detection naturally increases the number of samples needed to

be observed from the initial state to achieve low risk. As such, it is shown both analyt-

ically and through simulations that there is exists a trade-off between the probability

of incorrect detection and the ability to detect early changes. This can, however,

alternatively be interpreted as selecting a threshold of certainty with which the de-

tector chooses the initial state of the sequence. When detecting early change times

which are near the cusp of this threshold of uncertainty, it is shown that the detector

exhibits additional detection delay due to the initial state uncertainty risk; however,

the expected increase in detection delay is shown to asymptotically vanish as the

change time increases.

The Bayesian formulation of the change detection problem considers a growing
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number of hypotheses over time to account for all possible change times, initial dis-

tributions, and final distributions of the sequence. Despite the growing complexity

of the problem over time, the proposed change detector can be implemented with

constant computational complexity by using time-recursive calculations and tracking

the relevant minimum-risk hypotheses. Furthermore, the computational complexity

of the algorithm increases linearly with the number of distributions, D, that the

sequence can assume before and after the change.

6.3 Future Work

In this thesis, a change detector was proposed for the problem of quickest detection

under unknown initial state. In the problem formulation, it was assumed that the

initial and final distributions of the sequence each belong to an arbitrarily large set

of distinct and known PDFs. In the formulation, the PDFs themselves are initially

treated as arbitrary; however, the performance analysis in Chapter 4 reveals certain

limitations regarding the set of PDFs which can be used with this test. Specifically,

Lemma 1 requires that all PDFs have the symmetry of having the same energy,

while Theorem 1 requires that all PDFs have finite variance for the convergence and

divergence conditions to apply. In this thesis, the performance of the proposed change

detection scheme is characterized for sets of PDFs which satisfy these limitations. The

condition of having finite variance PDFs does not pose an issue when considering real

world applications; however, the condition of all PDFs having the same energy would

naturally restrict the number of viable applications for this change detector. As

such, some future work could include identifying whether or not the behaviour of the

proposed change detector is robust to the asymmetric cases where not all PDFs have
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the same energy.

In Chapter 3, it is shown that the cost structure chosen yields a change detector

which can be implemented using a time-recursive algorithm which achieves constant

computational complexity over time. However, the computational complexity of the

test is still large when compared to the algorithms for other change detectors. The

time-recursive algorithm for the proposed change detector only calculates the risks

for the recursively tracked minimum-risk hypotheses; however, many of these tracked

minimum risks diverge exponentially and become very large early in the test. As

such, determining a risk threshold to dismiss certain high-risk hypothesis could serve

to significantly reduce the computational complexity of the change detector while only

slightly increasing the probability of incorrect detection or average detection delay.
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