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Abstract-The relationship between the geometry of a stereo camera 
setup and the accuracy in obtaining three-dimensional position infor- 
mation is of great practical importance in many imaging applications. 
Assuming a point in a scene has been correctly identified in each'image, 
its three-dimensional position can be recovered via a simple geomet- 
rical method known as triangulation. The probability that position es- 
timates from triangulation are within some specified error tolerance is 
derived. An ideal pinhole camera model is used and the error is mod- 
eled as known spatial image plane quantization. A point's measured 
position maps to a small volume in 3-D determined by the finite reso- 
lution of the stereo setup. With the assumption that the point's actual 
position is uniformly distributed inside this volume, closed form 
expressions for the probability distribution of error in position along 
each coordinate direction (horizontal, vertical, and range) are derived. . 
Following this, the probabiiity that range error dominates over errors 
in the point's horizontal or vertical position is determined. It is hoped 
that the results presented will have an impact upon both sensor design 
and error modeling of position measuring systems for computer vision 
and related applications. 

Index Terms-Computer vision, image quantization effects, passive 
ranging, position error analysis, stereo image pairs, triangulation. 

A CRUCIAL task that faces computer vision and 
other triangulation systems is the ability to obtain 

accurate three-dimensional position information in the 
presence of limited sensor resolution. Sensors for com- 
puter processing applications produce sampled, quantized 
data whose spatial resolution is determined by limits in 
device technology and bandwidth. In computer vision and 
photogrammetry, a widely applicable passive ranging 
technique for obtaining 3-D data uses a stereo camera 
setup (Fig. 1). In finding the depth of a point in a scene, 
a triangulation must be performed on its projections onto 
two image planes. A knowledge of feature point corre- 
spondence is required to correctly match points in the im- 
age. Obtaining pairs of corresponding projection points is 
a difficult task and has received much attention in recent 
years [I] ,  [6], [8]. Assuming correct point matches have 
already been identified, the next step is to recover the 
three-dimensional information via a simple geometrical 
method known as triangulation. Given a known quanti- 
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zation in image location (which may or may not corre- 
spond to the physical pixel size), the ensuing analysis will 
be concerned with the resulting position accuracy in trian- 
gulation for the case of two parallel image planes. Al- 
though accuracy in determining correspondence will de- 
pend upon the matching method used (complex features 
such as line intersections can produce subpixel accuracy), 
it is assumed that error modeling appropriate to the par- 
ticular method of feature extraction may be equivalently 
expressed as a spatial quantization in the image planes. 
Within this assumption, the analyses presented here have 
application in robotics, autonomous vehicle navigation, 
photogrammetry, and radar. 

A. Existing Literature 
Outside of the photogrammetry literature [14], the re- 

lationship between the geometry of t h e  stereo camera 
setup and the accuracy in obtaining the actual 3-D posi- 
tions has received scant attention though is of great prac- 
tical importance. Duda and Hart [12] gives a brief treat- 
ment of the subject. McVey and Lee [2] have performed 
a worst case error analysis on the image plane resolution 
required to achieve depth measurement of a given accu- 
racy. This problem has also been considered by Solina 
[15]. Recently, Vem and Torre's error analysis of depth 
estimates [16] separated the errors into two components. 
The first, precision of the setup geometry, affects absolute 
depth estimates while the second, image plane orientation 
and focal lengthlimage separation ratio, affects relative 
depth estimates. In some cases, triangulation is not per- 
formed explicitly: a linear relationship between the 2-D 
and 3-D coordinates is expressed through a 4 by 3 projec- 
tive matrix [12], [14], [17] determined by a camera cali- 
bration procedure. For the construction of accurate depth 
maps, [I],  [6], [9], or the estimation of motion parame- 
ters from 3-D data obtained by a sequence of stereo pairs 
of images [3]-[5], [7], [lo],  [17], the resolution require- 
ment is severe and a conservative worst case design is not 
feasible. Thus, to live within the constraints of limited 
spatial resolution, a greater understanding of position er- 
ror from image plane quantization is crucial. 

B. Problem Dejinition 
A much more useful alternative to the worst case anal- 

yses such as in [2] and [14] would be to determine the 
probability that a certain position estimate is within a 
specified position tolerance given the camera geometry of 
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Fig. 1 .  Stereo camera setup. 

a stereo setup. It seems that such an approach is not taken 
in the photogrammetry literature (see [14] for references). 
As attempted in [14], this paper analyses the accuracy in 
obtaining 3-D position of points by triangulation on two 
quantized image planes. It will be assumed that the only 
cause of error is image plane quantization in terms of a 
system of image coordinates. A pinhole camera model [9] 
is used thus ignoring camera lens distortion and other op- 
tical nonlinearities. Despite these simplifications, results 
presented are quite general in that they are lower bound 
performance estimates for any imaging systems that pro- 
cess sampled image data. A further assumption is a limi- 
tation of the possible camera geometries; the left and right 
cameras are at equal height and orientation, i.e., the co- 
ordinate axes of the two image planes are related by a 
horizontal shift in position. This camera geometry has im- 
portant practical applications since the search for image 
point "correspondences" can then be restricted to search- 
ing a single scan line. Moreover, the parallel camera ge- 
ometry is used in instances where the recovery of rather 
large depth values is critical. This restriction in camera 
geometry, then, still applies to many stereo setups of in- 
terest. 

C.  Scope of the Analysis 

The analysis that follows will help quantify several ma- 
jor observations about obtaining 3-D point positions via a 
triangulation procedure: 

1) On the general assumption that the exact unknown 
3-D point location lies uniformly anywhere within a small 
volume around its true position, the probability distribu- 
tion of the error in position measurement along each of 
the coordinate axes will be derived. 

2) The degree to which the error in estimating perpen- 
dicular distance from the image planes (range) dominates 
over errors in measuring the point's horizontal or vertical 
position will be quantified. 

11. SETUP 
A. Linear Pinhole Model Assumption 

Before describing the stereo setup we will first look 
more closely at the effects of a major simplifying assump- 
tion made in Section I-B to further ascertain the applica- 
bility of the analysis. Recall that a pinhole camera model 
is employed for each camera. That is, the lens is consid- 
ered to be a point through which all incoming rays of light 
pass. Simple geometric optics reveal that such a camera 
can focus perfectly on all points in the camera's field of 
view. In reality, a pinhole cannot be used since it does 
not allow enough light through to the imaging surface. 
For this reason, a lens is used whose aperture size is set 
to be inversely proportional to the amount of light in the 
scene. However, this finite aperture allows only one range 
(distance along the optic axis) to be focused upon exactly, 
while all other depths have an associated circle of confu- 
sion in the image plane [9]. One may assume that in well- 
lighted conditions and with a proper geometrical setup, 
the lens aperture is small enough so that the effect of such 
blurring is small compared to the camera's other distor- 
tions. Under such conditions a pinhole model can be ac- 
cepted as a very close approximation to a lens' behavior. 

B. Triangulation in the Case of Parallel Image Planes 

A simple mathematical expression for a point's 3-D co- 
ordinates in terms of the two sets of quantized image co- 
ordinates and the parallel projection camera geometry will 
be presented (for a similar approach, see 1131). With the 
two image planes at the same height, a point in 3-D is 
projected onto the same horizontal scan line in each of the 
two images. lllustrated in Fig. 1 is the geometry to be 
used for such a setup. The points fi and f, are the focal 
points of the left and right cameras. The quantities d v  and 
du are, respectively, the horizontal and vertical pixel 
spacings of the two imaging surfaces. A denotes the dis- 
tance between the two optical axes and is usually refeired 
to as the baseline of the system. A point S on the object 
will have coordinates ( x ,  y,  z ) .  For image pixel coordi- 
nates, let (0, 0) be at the center of each image, through 
which the optical axis passes. These image coordinate 
system origins are depicted in Fig. 1 as (Io, Jo).  The co- 
ordinates of S's projections on the imaging surfaces are 
as follows: as shown in Fig. 1, point S projected onto the 
left imaging surface will have coordinates (I,, J i )  where 
each coordinate ranges from - N/2 to N/2 - 1 pixels for 
a resolution of N by N pixels. Similarly, S will be pro- 
jected onto (I,, J,) in the right image. As defined above, 
references to the right and left images will be distin- 
guished by subscripts "1" and "r." 

Due to the camera geometry described, the vertical co- 
ordinate will be the same in both images, i.e., Ii = I,. In 
a 3-D world coordinate system with origin at point "0" 
midway between the two image centers, a point at (Ii, J i )  
would lie at (Iidu, - A/2 + Jldv, 0 ) .  From Fig. 1 it is 
easy to derive the location of S in terms of the coordinates 
(Ii, J,)  and (I,, J,) and camera parameters: f ,  the common 
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focal length, A, the baseline distance, and dv, the pixel 
dimension. This operation is simply known as triangula- 
tion and can be performed by the use of similar triangles. 
From Fig. 1, point 

assuming du = dv. From (I) ,  the location of point S can 
be found in terms of imaged I/, I,, Jl,  J, and known f,'dv, 
and A. It is assumed that both cameras have the same 
focal length f. The assumption du = dv is without loss of 
generality, for the convenience of simplifying expressions 
in the analysis that follows. 

111. STEREO QUANTIZATION 
A. True versus Sampled Projection Point Positions 

An implicit assumption made in (1) is that S projects 
exactly onto the integer valued image coordinates. How- 
ever, the exact location of the projection onto the left im- 
age, for example, is not at coordinates (Il, JI) ,  but within 
(Il + 4, JI + 4). A sampled imaging system locates a 
projected point no more accurately than within the nearest 
integer pixel coordinates. We can define the actual loca- 
tions of the left and right horizontal components of the 
projections on the image in our 3-D system as 

dv 
6% 

Fig. 2.  Horizontal projection of a triangulation. 

the location of a 3-D point from stereo vision we assume 
no a priori information about its true position. Referring 
to Fig. 2, the projection of the 3-D space in the y-z (hor- 
izontal and depth) plane, we assume that the actual loca- 
tion of a point can be anywhere within quadrilateral P l ,  
P2,  P3,  P 4  (since nl and n, are unknown). In other words, 
the observed horizontal coordinate J, arises from the true 
location of a point which we will assume to be within P 1, 
P 2 ,  P3 ,  P 4  with equal probability. 

(2b) C Geometry of Horizontal (y-z) Slice of Region of 

where nl and n, are real numbers between 0 and 1. In Fig. 
2 a horizontal "slice" of the 3-D space in Fig. 1 is shown. 
Similar definitions to (2a) and (2b) can be given for the 
vertical (x) projection. Due to the parallel projection 
camera geometry assumed for this problem it can be ob- 
served in (1) that the locations of the y and z positions of 
any 3-D point are functions of only the horizontal ( J )  
coordinates and are independent of vertical image posi-, 
tion ( I ) .  As a consequence, an analysis of the accuracy 
in locating the y or z components of a 3-D point can be 
camed out simply by considering any one of an infinite 
number of identical (horizontal) y-z plane slices of the 
3-D space pictured in Fig. 2. 

Uncertainty 
Let us assume that the point S may lie with uniform 

distribution within the quadrilateral P 1, P 2 ,  P 3, P4,  
which we denote as the region of uncertainty, or ROU. 
More generally, S can lie uniformly within some volume 
due to additional uncertainty in the vertical coordinate. 
Fig. 2 depicts the y-z projection of such a region of un- 
certainty. 

In order to proceed further, expressions for the length 
of segments P 5 P  6 and P 7 P  8 in Fig. 2 must be derived 
in terms of the unknowns nl and n,. In Appendix A, 
expressions for the segments' end points are determined 
and approximations for their lengths are obtained. Fol- 
lowing this, a statistical interpretation of the projection 

B. Uncertainty in 3-0 Position Due to Image points is given using simple geometric reasoning about 
Quantization these segment lengths. From Appendix A, (A 1) , segment 

P5P6  (Fig. 2) has, to a close approximation, length By inspection of (2) the uncertainty in locating a 3-D 
point comes from the quantities nl and n, not being phys- A 
ically obtainable for any finite resolution system: there ( 1  P 5  - P 6  )I = (Jl - J, + nl) (Jl - J ,  + n, - 1) will be an uncertainty of f pixel for any pixel size. This 
uncertainty can be viewed as a stereo quantization pro- 1 12 

I cess where nl = n, = 2 .  The expression reduces to (1) - [$ + J:] . (3)  
where S is observed with integer valued I and J coordi- 
nates. To quantify the amount of uncertainty involved in Also from Appendix A, (A2), the length of the projection 
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of an infinitesimally thin interval of width dn, in the image -- 
plane upon segment P 5 P 6 ,  P7P 8 ,  can be approximated 
to second order by 

A dn, 112 - - 
( J /  - Jr + n/ - nr) 

, [ - $ + J : ]  . ( 4 )  

IV. STATISTICAL INTERPRETATION OF PROJECTION. 
POINTS 

From ( I ) ,  uncertainty in range ( z )  and horizontal po- 
sition ( y )  are purely a result of quantization in the hori- 
zontal ( J )  coordinate and are independent of the vertical 
( I)  coordinate. An analysis of triangulation can proceed 
by first considering a horizontal slide ( y-z)  of the 3-D 
space and the associated horizontal component of the im- 
age planes. From here on consider a horizontal slice of 
the 3-D space. Assume that a point in y-z space may lie 
anywhere uniformly within the ROU in Fig. 2 .  This model 
of the uncertainty is reasonable since a priori information 
about the point's position within the ROU ( P I ,  P 2 ,  P 3 ,  
P 4 )  does not exist. This is where the probabilistic model 
of the problem originates%, resulting in a probabilistic 
interpretation of nl and n, as continuous random variables, 
N1 and N,. 

The analysis is summarized as follows: the distribu- 
tions are found from the projection of the ROU onto a 
horizontal line in each of the image planes. The proba- 
bility that N1 takes on a value nl can be modeled as being 
proportional to the area of a very thin rectangle with length 
11 P5 - P 6  I( and infinitesimal width. Since the point in 
Fig. 2 lies anywhere uniformly in the region bounded by 
P I ,  P 2 ,  P 3 ,  P 4 ,  it has a greater probability in being pro- 
jected onto an nl that corresponds to a longer segment 
P5P 6 .  The second step is to derive the conditional den- 
sity of n, given that S projects onto nl. This is just pro- 
portional to the length on P 5 P 6 ,  ( 1  P7 - P8  1 1 ,  that an 
infinitesimally thin segment in the right image, 6nr, will 
project. In places along n, where 6nr projects onto a longer 
segment P 5 P 6 ,  point P will be found inside this larger 
area with a correspondingly higher probability. From the 
density of Nl and the conditional density of N,, given Nl, 
the joint density of N1 and N, is straightforwardly ob- 
tained. 

A. Joint Probability Distribution of Projection Points 

With a point uniformly distributed in the ROU, the 
marginal density of the projection of such a point onto the 
left image plane is simply proportional to the length of 
segment P5P6  corresponding to a projection point, nl, 
located between L - and L +. This can be thought of as 
the ratio of the area swept out by a thin strip bounded by 
P5P6 to the area of the ROU. Expressing the line seg- 
ment length 1) P5 - P6  11  (3 )  as a probability measure of 

nl, we get the density 

Once it is known that a point projects onto nl in the left 
image, the projection on the right image is constrained by 
the fact that the point lies somewhere on P5P6 in the 
ROU. Since P 5P6  has a different slope depending on nl, 
the point is projected differently on the right image de- 
pending on the value of n/.  The probability density is pro- 
portional to the length of the projection that a very thin 
strip dn, makes on P 5P6  as a function of the position 
along the interval [ R  -, R + 1. This quantity is simply the 
segment P7P8 ( 4 ) .  By normalizing ( 1  P7 - P8  )I to be a 
probability measure of position along [ R  -, R + 1, or, 
equivalently, as a function of the value of n,, the condi- 
tional distribution obtained is 

The joint density [ l l ]  of the distribution on the two image 
planes is 

Multiplying the previous derived expressions gives 

- - 1 
2 -In 1 1 - (Jr  - J , ) - ~  1 (J1  - J, + nl - n,) 

V. ANALYSIS OF POSITION ERRORS 
A. Probability that Error in Range (z) Less than a 
Specified Tolerance 

From the joint density derived in ( 6 ) ,  probabilities of 
various events involving the random variables N1 and N, 
can be determined by integration over an appropriate re- 
gion. For example, the joint probability distribution of the 
projection points of the ROU on the left and right image 
.planes can be directly used to derive the uncertainty in 
ranging a point using triangulation. Define the relative er- 
ror in ranging a point as 
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where z is the exact range of the point, 

and i is the quantized ranged point, 

From here on we define the disparity D = J, - Jl.  Note 
2 - n r =  that the quantization process assigns the values - 

nl. Substituting (8) and (9) into (7) gives 

The probability of the range value being withiil a cer- 
tain tolerance 7 ,  can now be formulated as 

The task is now to integrate the joint density of Nl and 
N, given by (6) in the .region of the nl - n, plane defined 
by the above equation which can be further manipulated 
to yield a square region above the plane bounded by two 
slanted parallel lines: 

~ ( 1  €2  ( < 7 2 )  = P ( - T ~ ( J ~  - J I )  + n, 
< nl < 7, (J ,  - J l )  + n , ) .  

Examination of the nl - n, plane reveals that this expres- 
sion is equivalent to the unit volume over the entire region 
minus the volume of the regions above and below the par- 
allel lines, or 

The integration of this joint density (6) within the above 
region yields 

p ~ e ~ l ( I  €2 I < 7,) 

where 7, is the relative error in ranging point S and D = 
jr - J1 is the horizontal pixel difference between the left 
and right images. Note that the above expression only de- 
pends upon the disparity D associated with point S. 

I )  First Order Approximation and Comparison to 
(11): It turns out that ( l l ) ,  the derived probability 
expression for error in range, can be simplified greatly 

without appreciable loss in accuracy as long as the error 
disparity exceeds several pixels (as in most practical 
cases). We use the first order Taylor series approximation 
of the "logarithm" terms in ( l l ) ,  

Substituting these into (11) yields the approximate 
expression 

Recall that the only assumption made in the derivation of 
(11) is that S may lie uniformly within a volume in 3-D 
whose horizontal projection is the region of uncertainty 
in Fig. 2. Suppose we instead assume that Nl and N, are 
independent and uniformly distributed between 0 and 1. 
Their joint density would then be uniform. It can be shown 
that the resulting distribution of range error would be 
identical to (13). Finally note that the density function of 
range error, the derivative of (13), is highly non- 
Gaussian: it is defined over a finite interval and has a con- 
stant slope. 

The degree to which (13) approximates (11) must now 
be quantified. In Appendix B it is shown that the maxi- 
mum error over all 7, between the two probability distri- 
bution functions (13) and (1 1) is 

For example, if the disparity, D = 10 pixels, the maxi- 
mum distance over 7, between (1 1) and (13) is less than 
0.01. This explains the use of the same dashed line for 
the two functions (plotted in Fig. 3, where D = 50 and 
the maximum distance is within 0.004. Note that for small 
D, (13) may have significant inaccuracy and (11) must 
instead be used. However, for the purposes of the re- 
maining discussion, we will use (13) as an adequate ap- 
proximation. 

2) Experimental VeriJication: A computer simulation 
was performed in order to verify the derived range error 
distribution of (1 1) as well as its approximation (13). An 
ideal pinhole camera model of the stereo setup was used 
to project randomly generated uniformly distributed points 
in 3-D onto two parallel planes. For all experiments de- 
scribed in this paper, the camera geometry consisted of 
two identical 512 by 512 pixel resolution imaging sur- 
faces of dimension 50.8 mm (dv )  by 38.1 mm ( d u ) .  The 
baseline distance between optical axes was 0.5 meters and 
the focal length of each camera was 28 mm, correspond- 
ing to a 75O view angle. 

The purpose of the experiment was to verify the cu- 
mulative distribution functions of (1 1) and (13). A large 
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error tolerance 'tz 

Fig. 3.  Cumulative distribution function of relative error in range for a 
disparity, D = 50. The dashed line is the theoretical value (13), while 
the solid line is the experimentally determined edf. 

number of-points in 3-D were generated randomly so as 
to be visible to the simulated stereo setup. A pair of quan- 
tized image coordinates were generated for each 3-D 
point. The observed location of the point was determined 
by performing a triangulation on these integer-valued co- 
ordinates. The error was calculated as the absolute value 
of (7). Fig. 3 plots the cumulative distribution function 
(cdf) for points that have a disparity of 50 pixels. It turns 
out that (13) is an extremely good approximation for (1 1) 
and both error expressions represent the same dashed line 
on the plot. The solid line is the.experimentally deter- 
mined cdf of I E, I. In the experiment, several hundred 
points produced the histogram shown. On the horizontal 
axis is the relative error in range T,, while the vertical axis 
represents the probability that ( E, I does not exceed this 
tolerance. As shown in Fig. 3, the theoretical results echo 
the experimental findings quite closely. 

B. Probability of Horizontal Position ( y )  Error Less 
than a Specijied Tolerance 

In a similar fashion, the probability distribution for po- 
sition errors in the horizontal ( y ) direction is now de- 
rived. First, we let y denote the true horizontal position 
of an imaged point and ji denote the measured horizontal 
position found from triangulation. Thus 

For convenience we let h = J,, if J, # 0 ,  be a horizontal 
pixel deviation (note that h > 0 ) ,  we let D =7 J, - JI, 
the disparity, and R = f / d v ,  the resolution factor. The 
error, then, as a function of depth is 

The calculation consists of determining an expression for 
P( ( E, I < ry)  where T, is a positive valued error toler- 
ance. From the above definitions. 

which must be integrated over the appropriate region of 
the n, - nl plane. Unfortunately, such an integration is 
much more complicated than that performed in the deri- 
vation of range error distribution (1 1). It will be assumed 
that the joint distribution of nl and n, will have constant 
unit value as approximated in Section V-A-1). Note that 
(17) reveals a region bounded by parallel lines in the 
n, - nl plane having a separation and slope dependent on 
the quantities defined. This region intersects a square con- 
sisting of realizable values of nl and n, in many different 
ways. It can be shown, that the integration of (17) yields 
the following expression: 

let 
1 x r O  

sgn ( x )  = 
-1 x < O  

D'($ + R'T; + sgn ( h  - D) R T ~ )  
B = 

h ( D  - h )  
In terms of the quantities defined above, 

I otherwise 

Note that the above function is symmetrical about h = 
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resents a point nearer to the edge of the image plane 
whereas Fig. 4(a) is the error distribution of a point near 

o.6--- the center of the image plane. Note the higher probability 
i of error in the case h = 150 pixels. 

C. Probability of Vertical Position (x) Error Less than - 
>. 4 a Specijied Tolerance 

The positional error distribution for the vertical (x) di- 
rection is now derived. Unlike the range and horizontal 
directions, which are functions of only the random vari- 
ables Nr and N,, the vertical position error is also a func- 

I , I ,  I , r t  tion of quantization in the vertical as well as the horizon- 
0 . 0 0  0 .05  0.10 0 . 1 5  0 .20  tal direction. Analogous to horizontal image coordinates 

x 1 r 2  
error tolerance r y  Jr and JI ,  with respective error components n, and n,, we 

(a) can define 

1 .  XI  - xr G (I, + n,, - 4) du (19) 

0 .  
where n,, is the subpixel uncertainty in vertical position 
(ranging from 0 to I), and du is the vertical pixel spacing. 
Note that for the stereo setup considered, ZI = I,. Without 

0. - loss of generality we will assume du = dv to avoid car- 
>. rying around the extra constants. The formulation pro- 
" 0. - ceeds as usual where the error expression 
>. - - (a - X) 
C4 0. Ex = - 

Z 
(20) 

0. and R is the vertical position found from triangulation 
0.000 0 .002  0.004 0.006 0 .008  0.010 while x is the true vertical position. Using ( I ) ,  

error  tolerance 'Ty 

(b) A (Z + nf, - i) 
Fig. 4. Cumulative distribution function of error in horizontal position for X = 

a disparity of 50 pixels and horizontal displacement of (a) 35 pixels and (Jr - JI + nr - nl) 
(b) 1'50 pixels. ~ g s h e d  line is from (18), solid line is the exp&imentally 
determined cdf. while for the quantized point, 

0 1 2 ,  a plane equidistant from the two focal points. Even 
though the triangulation calculation is asymmetrical with 
respect to the left and right images, the resulting error 
distribution is symmetrical. As a result, the error distri- 
bution is invariant to the two possible ways that the trian- 
gulation calculation may be performed (an expression 
equivalent to (1) may be derived for the "y" coordinate 
based on Jl rather than J,). 

I) Experimental Verijication: A computer simulation 
was used to verify (1 8), the cumulative distribution func- 
tion. The same stereo setup was used as in the range error 
experiment of the previous section. The same procedure 
was adopted [see Section V-A-2)] in the random point 
selection and quantization. In this experiment, however, 
additional information was recorded: the horizontal pixel 
displacement from the center of the right image plane, h.  
The resolution factor, R = f l d v  = 28.0 x 5 12 150.8. Fig. 
4(a) shows the cumulative distribution function for a dis- 
parity D of 50 pixels and horizontal displacement h of 35 
pixels. The dashed line is a plot of (18) while the solid 
line is the experimentally determined cdf based on about 
200 calculated samples of the error I E ,  I .  Fig. 4(b) shows 
a similar plot where h = 150 pixels. This latter case rep- 

Substitution into (20) gives the error expression 

where v = Zl, if Zl Z 0, is a nonzero vertical pixel dis- 
placement from the image center and D is the disparity. 
Without loss of generality we will consider the case where 
v > 0 since there is symmetry about the horizontal plane 
passing through the focal points of the cameras. Using 
(21) and simplifying the right-hand side yields 

As in Section V-A-l), the random variables n, and nl 
will be taken to be independent and uniformly distributed, 
defined on [0, 1). The random variable nu, representing 
vertical image quantization, is independent of the other 
two quantities and is also uniform on [0, 1). This follows 
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from the assumed uniform distribution for the position un- 
certainty and the parallel projection camera model remov- 
ing the dependency between vertical and horizontal spa- 
tial quantization. 

With distributions now specified for the random vari- 
ables n,, n,, and n,,, their joint distribution can trivially be 
specified as a uniform density unit cube, 

1 O s n , . ~  l , O 1 n l r  1 , O r n , 1  1 
i, =[  0 otherwise. 

( 2 3  ) 
Integration of (22)  in the cube region of (23)  is the final 
step to obtain the probability distribution. Examination of 
(22)  reveals the unit cube cut by two parallel planes that 
may intersect in many possible orientations depending 
upon image plane location, camera model parameter val- 
ues, and maximum error tolerance parameter T.,. 

a closed form expression for (24)  involves dividing up the 
triple integral into a large number of cases (26 in all) each 
representing a region of integration applicable to different 
relative magnitudes of the variables D ,  1 1 ,  R, and 7 , .  Since 
the cumulative distribution function of 7 ,  is of interest, 
the resulting expression is in the form of a piecewise con- 
tinuous function of ?.,. Thus, the integration turns out to 
be a rather tedious exercise due to a large amount of 
"case chasing." The mathematical software package 
MACSYMA was used to symbolically evaluate the 26 tri- 
ple integrals. This results in the following distribution for 
7 ,  : 

Let 

P ( (  €.r 1 < 7;) = 2DRr., 2 ~ ~ ~ ~ 7 :  D'RT, 
mini l . ( r . / ~ ) ( ; , - n i ) + ~ ~ r +  1/11 P = - -  -- 

dv,, dn, dn,. ( 2 4 )  v 3 v 2  211' 
r n a x ( ~ . ( r * / D ) ( n ~ - n i ) - ~ ~ x +  1 /21  

3 D 2 ~ r ,  5~~ 1 0 = -- 
The computational problem arises from the limits of the +y-- 4 v 2  24v 2'  
integral with respect to n,: expressed as minimum and 
maximum functions of the variables n, and n,. Obtaining In terms of the quantities defined above, 

v '1 V 1 
- + - < T  -= -+ -  
2DR 2 R  " ' D R  2 R  

v 1 
0 r T,  5 -- + - and D z 2 v  DR 2 R  

v 1 
O r r , r - -  + - and D < 2 v  - D R  2 R  

if D z v  

1 v 1 v 1 $ + * + -  < r  -= -+ -  
2 DR 2 R  " - D R  2N 

else. 
2DR7, D ~ R ~ T :  D 2  1 v ----- - 1 

< T  < - - -  
12v2 2 R  " -  DR 2 R  V u 2  
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x1r2 
error tolerance rx error tolerance T x  

(b) 

error tolerance rx error tolerance rx  

Fig. 5 .  Cumulative distribution function of error in vertical position for a 
disparity of 50 pixels and vertical displacement of (a) 15, (b) 35, (c) 75, 
and (d) 130 pixels. Dashed line is from (25). solid line is the experi- 
mentally determined cdf. 

The lengthy details of this calculation have been omitted. 
Note that the symmetric case where v < 0 can be handled 
in likewise manner yielding an identical set of expres- 
sions. 

I) Experimental Ver8cation: Evidence for the cor- 
rectness of the vertical positional error probability distri- 
bution expressions has been obtained by performing a 
computer simulation using the stereo setup and pinhole 
camera model described. A disparity D of 50 pixels was 
used and four different values of v were tried correspond- 
ing to four different cases of (25): a) ( v = 15), b) ( v = 
35), c) ( v  = 75), d) ( v  = 130). 3-D points were ran- 
domly chosen and quantized according to the camera 
model. For each point that had the same selected D and 
v, ( E ,  I was calculated and the resulting collection of error 
points was histogrammed and was compared to the theo- 
retical distribution predicted by (25). This is shown in 
Fig. 5(a)-(d). Each experimental cdf (solid line) is based 
on several hundred random points that were projected into 
the ROU corresponding to the four respective image lo- 
cations. Note the closeness of the experimental and ana- 

lytical results. Also, note the increase in error from cases 
(a) to (d), as the points are located closer to a vertical edge 
of the image plane. 

Probability distributions have now been derived for po- 
sition errors (as a fraction of range error) in each coordi- 
nate direction: range ( 2 )  in Section V-A horizontal ( y )  in 
Section V-B, and vertical ( x )  in this section. The next 
step is to find ways of quantitatively comparing these dis- 
tributions, the subject of the next section. 

D. Error in Range Dominates over Vertical Position 
Error 

In this section, the degree to which the error in range 
(2 )  dominates over the vertical ( x )  error will be explored. 
We start off by substituting the expression for g (lo), into 
the expression for the error in the x component, i.e., we 
.write ex as a function of 4: 

Using the Triangle Inequality, E, can be bounded from 
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below: 

where B = 1 /R I n, - $ 1  is a random variable uniformly 
distributed on [ - 1 /2 R, 1 /2 R], independent of E ,  [by 
the same argument which lead to (23:)l. Next, the quant.ity 
P ( B  5 a ( E ,  I), for some positive constant a, must be 
determined. The details of this calculation are found in 
Appendix C: 

The analysis can now be completed as follows: we com- 
pute 

using (26) and (27). Substituting into (28) gives the final 
result, 

TABLE 1 
PROBABILITY THAT RANGE ERROR I EZ I EXCEEDS VERTICAL POSITION 

ERROR ( E, ( 

ing disparities D and vertical pixel offsets from center v, 
listed in Table I. For approximately 500 point samples for 
each row in Table I, P (  I E ,  I < I E: I ) was calculated. This 
is compared to the bound computed from (3 1). From the 
results in Table I, the domination of the range error over 
the vertical error is made self evident. Note that the 
bounds, as expected, are fairly loose due to the use of the 
triangle inequality. Nonetheless, this rough estimate has 
been produced by avoiding the much more lengthy (and 
likely intractable) calculation of a joint distribution be- 
tween the range and vertical errors. 

v D R 

10 50 376.27 

80 50 376.27 

150 50 376.27 

220 50 376.27 

10 80 376.27 

80 80 376.27 
150 80 376.27 

220 80 376.27 

E. Error in Range Dominates over Horizontal Position 
Error 

This section derives a lower bound for the probability 
that the error in the horizontal position is less than the 
error in range. This complements the discussion that be- 
gan in the previous section in comparing the different po- 
sitional error distributions; the last section was concerned 
with the vertical position error while the present section 
will derive an analogous expression for the horizontal er- 
ror. The general approach will be the same in that the 
bound will arise from an application of the triangle in- 
equality. However the intermediate expression differs 
substantially; all uncertainty in position arises from quan- 
tization in the horizontal ( J )  image coordinates due to the 
stereo setup (see Section IV). 

We first express the horizontal position error in terms 
of the range error, horizontal image pixel offset, uncer- 
tainty parameters, and camera model constants as 

Equauon(3l) experiment 

0.933298 0.973643 

0.917992 0.966434 

0.893583 0.937500 

0848554 0.913105 

0.894767 0.952966 

0.871065 0.946479 

0.833639 0.929825 
0.765877 0.878650 

1 1 
ey = ( 9  - y)/z = - heZ + - (n, - 4) 

R R 
D r 2(R - v) using (10) and (16). Letting C  = 1 /R (n, - i), a random 

variable on [ - 1 /2 R, 1 /2 R] , we now proceed as in the ( ) previous section observing that 
where we assume that R > v, as found in nearly all cases 
of practical interest. 1ryl = IkhE,  + C (  I) Experimental Verification: To give evidence for the . 

performance of the derived lower bound, a computer sim- 1 
ulation of the stereo setup of Section IV provided 3-D 5 - h ( ~ , l  + / c (  R (32) 
points with image plane quantization noise. In particular 
the quantities I ex I and I E,  I were calculated for points hav- using the Triangle Inequality. To proceed further, it is 
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TABLE I1 
PROBABILITY THAT RANGE ERROR I E ;  I EXCEEDS HORIZONTAL POSITION 

ERROR I E ,  ( 

necessary to evaluate P ( p I C I I I E, ( ) for some positive 
constant p. The details are omitted here for brevity con- 
siderations but can be found in Appendix D. 

h D R 

10 50 282.2 

80 50 282.2 

150 50 282.2 

10 80 282.2 

80 80 282.2 

150 80 282.2 

Returning to (32) we have 

Equation(35) experiment 

0.927363 0.936893 

0.905422 0.911833 

0.884609 0.829953 

0.890217 0.896197 

0.859578 0.881890 

0.805538 0.800511 

Replacing /3 in (33) with the quantity multiplying C in 
(34) gives 

where it is assumed that R > h,  which is the case for most 
stereo setups of interest. 

1) Experimental Verijication: Analogous to (31), the 
above result was checked by performing a computer sim- 
ulation using the stereo setup to simulate the quantization 
of the 3-D positional errxs. Table I1 compares the exper- 
imentally determined probabilities to the bound calculated 
by (35). Each row of the table lists such a comparison for 
various combinations of disparity D and horizontal pixel 
offsets h for a fixed resolution factor R = dv/f. Exami- 
nation of Table I1 reveals the extent to which range error 
dominates over error in the horizontal position. Also note 
that the bound derived in this section is somewhat tighter 
than that in Section V-D. 

V. SUMMARY A N D  DISCUSSION 
This paper has quantified certain fundamental limita- 

tions in the accuracy of obtaining 3-D positional infor- 
mation based on triangulation of point correspondences 
derived from a stereo camera setup: the probability dis- 
tributions of the errors in all three component directions 
have been derived and were given in (1 l),  (1 8), and (25). 
A useful simplification to the range error cdf, ( l l ) ,  was 
given by (13) where the approximation was quantified by 
(14). Quantitative results relating the magnitudes of the 
vertical and horizontal errors to the range error have been 

presented, which were given by (31) for the former case 
and (35) for the latter. For all results discussed, the as- 
sumptions employed were rather general: in the absence 
of other information, a point's true 3-D position lies uni- 
formly anywhere within a volume consistent with the im- 
age plane quantization. When measuring image position 
in terms of integral "image coordinates," the quantiza- 
tion in the image plane is clearly known. Alternatively, 
image position may be determined to subpixel accuracy 
by interpolating image feature positions. In this case, 
measurement errors are modeled by an appropriate spatial 
quantization at higher resolution. The imaging model was 
that of an ideal pinhole camera. Lens distortion and noise 
from electronic components have not been considered. Far 
from presenting an oversimplified error analysis, results 
obtained here are genuine upper bounds to performance 
of any such triangulation based system independent of the 
state of the current technology. Hopefully, the expres- 
sions obtained will have some impact on sensor design 
and synthesis. For computer image registration and track- 
ing applications, the correlation between the different er- 
ror components needed for estimation and filtering can be 
calculated based on the distributions derived here. 

APPENDIX A 
Refemng to Fig. 2, we can express the coordinates of 

the labeled points in the y-z plane as 

A 
L+ = ( -T  + (Jl + 4) dv, 0) 

Also recall (2), the exact location of a point projected onto 
a horizontal line in the left image and right image planes. 
With (2) and the above defined quantities, the segment 
end points can be expressed as 

Af 
( J r  - JI - n l ) d v  + f). 
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The segment P5 P6 (Fig. 2) can be shown to have length 

since,, if J I  is large, nl  << J I .  Otherwise, the f 2 / d v 2  
term dominates regardless of the value of n l .  It can be 
further established that 

and that 

P8 = (A(' + Jr + nr + dn, - 1 
2  J I  - Jr + n l  - nr - dn, 

The length of the projection of an infinitesimally thin in- 
terval of width dn, in the image plane upon segment 
P5 P6 can be shown to be 

under the same approximation made earlier. Expanding 
the leftmost' square-bracketed term in the above expres- 
sion into a Taylor series and retaining the second order 
terms, it turns out that a cancellation with a negative term 
of 11 P7 - P 8  11 occurs, giving 

Since dnf can be made arbitrarily small compared to the 
rest of the quantities defined in the above expression, dn, 
can be redefined as dn: = dnf ,  finally yielding 

APPENDIX B 
To determine how closely (13) approximates ( l l ) ,  we 

will derive an upper bound on the maximum L distance 
between the two functions. For the purposes of this dis- 
cussion we will assume that D > 1. Let 

where the first inequality is obtained by expressing the 
logarithm as a Taylor series expansion about zero. We 
similarly let 

We first note that (1 1) and (13) are identically equal to 
one for rz 2 D - I .  For all rZ < D-I ,  < ( l / 2 D 4 )  < 
6  using (B  1 ) .  Thus, we see that the maximum error in ( 1  1 )  
over all rz ,  

argmax I ~ l . , l ( ' z )  - P,.,l(rz) 1 
Tz  

where 

k l + k 2 + E  k l + k 2 - E  
5 argmax - 

TZ k3 + 6  

k l + k 2 + 6  kl  + k 2 - 6  < argmax - 
Tz k3 + 6  

since ( k l  + k2 ) / k 3  > 0 and k3 > 6. Simplifying (B4) ,  

< argmax 26(kl + k2) 
Tz  k ;  - ti2 

I argmax 26(kl + k2) 
7 2  k  : 
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But ( k ,  + k2 ) / k 3  I 1 since it is identical to (1 1), a prob- C in Section V-E, 
ability distribution function, which implies ~ ( P I C I  5 I e z l )  

where we have substituted (B5c) and (B2) to get the last 
inequality, and noted that D-2  is larger than k3.  

Examining the quantity B in Section V-D in view of the 
assumptions in Section IV, it is obvious that the vertical 
(x )  position of the point in 3-D projects onto the (I)  co- 
ordinate in each image plane with uniform distribution. 
Moreover, the I  coordinate, 1, + n,. - 4, is the same in 
each image and is independent of the horizontal projec- 
tions n, and n , .  The density for the quantity B is just that 
of n,, scaled by the factor 2R and shifted by -$: 

1 0  - otherwise. 

The density of the error in range, Tz = 1 E ,  1, is the detiv- 
ative of its cdf, approximated by (13), or 

2(D - o 2 r Z )  r, < D - I  
f T Z ( ~ 7 Z  = I O 

Interpreting the n, - nl plane geometrically, it is quite 
r, 2 D - ~ .  easily shown that (Dl)  is a sum of four nonoverlapping 

regions corresponding to the four regions above. With the 
Since the random variables T, and B are independent, approximation of Section V-A-2), the four cases can be 

( c l  ) interpreted geometrically as the areas of four bounded re- fe, T, = f ~ , f ~ .  gions in the n, - n ,  plane. This leads to the evaluation of 
P (  ( B ( r a I E ,  1 ) is obtained by integrating (Cl)  in the the following: 
appropriate region: ~ ( P I c I  5 / % I )  

P ( ( B (  I a ) ~ ~ ) )  = S:12 - 8 D I R )  + l / 2 R  

dn, dn, 
= SaTz,  l B l  1 f T z ( r z )  f B ( b )  db drz. 

(2R + 1 ) / 2 ( R  +OD) 1 

7;/2aR 7za 
+ jli2 ! n,(I + j 9 D / R ) - 1 / 2 ~  

d n ~  dnr 
= 2 So S 2 R ( D  - . D ' T ~ )  db drZ 

0 

l / Z R  + i"' Snr  d n I h r  
+ 2 { l i D  2 R ( D - ~ ~ r , ) d b d r ,  1128~ 1/2j90 

7 , / 2 ~ a  0 
p l / 2 B D  p 1 / 2  

( C 2 )  
+ I:i2p [ ( I  - O D / R l  + &I dnr 

APPENDIX D 
In this section, we will evaluate P( 0 I C I 5 I E ,  I ) for = I -  PD -- PD 

some positive constant P ,  From (10) and the definition of 2 ( R  + OD) 16R' (D2) 
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Correction to "Error Analysis in Stereo 
Determination of 3-D Point Positions" 

STEVEN D. BLOSTEIN A N D  THOMAS S. HUANG 

In the above paper1 algebraic errors were introduced in the final 
algebraic simplification of Equations (18) and Equation (25)  for 
presentation purposes. However, the plotted graphs of these 
expressions, i.e., Figs. 5 and 6, are correct. In Equation (18) ,  the 
term B - A sgn ( h  - D ) should be replaced b y  B + [2DRty/  
( h  - D ) ]  sgn ( h  - D).  In Equation (25) ,  the " D  r v" case 
should read 

I- 

1 21 
0 5 1  < - - - -  and D r 2 u  

' - 2 R  DR 

v 1 
O s r x 5 - - -  and D < 2 v .  

DR 2R 
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