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Abstract—In cooperative networks, multiple carrier frequency
offsets (MCFOs) and multiple timing offsets (MTOs) originate due
to multiple distributed nodes. In this paper, algorithms for joint
estimation of these parameters and channels in amplify-and-forward
(AF) relaying networks are proposed. A new training model and
transceiver structure at the relays for achieving synchronization
throughout the network is devised. New exact closed-form expres-
sions for the Cramér-Rao lower bounds (CRLBs) for the multi-
parameter estimation problem are derived. An estimation method
is proposed for jointly estimating MCFOs, MTOs, and channel gains
at the destination based on space-alternating generalized expectation
maximization (SAGE) and compared to a computationally-intensive
least squares (LS) approach. The proposed estimator’s performance
is shown to be close to the CRLB at mid-to-high signal-to-noise ratio
(SNR) resulting in significant cooperative performance gains in the
presence of practical impairments.

I. INTRODUCTION

Cooperative communications is an attractive low cost solution

to combat fading in wireless systems, where multiple single

antenna terminals cooperatively transmit their received signals to

a designated node [1]. As a result, cooperative communication

can be an attractive approach for meeting the higher throughput

demands by the future wireless systems. However, in cooperative

systems, the application of multiple distributed nodes, each with

their own local oscillator, gives rise to MTOs and MFCOs [2],

[3].

Cramér-Rao lower bounds (CRLB) and different techniques

for estimating MTOs and MCFOs in decode-and-forward (DF)

and amplify-and-forward (AF) cooperative systems are derived

in [3]–[6] and [2], respectively. However, the analyses in [2]–[6]

are focussed on estimating one set of system parameters while

assuming that the remaining system parameters are perfectly es-

timated and compensated, e.g., estimating MTOs while assuming

perfect frequency synchronization [3], [5], [6] or vice versa [2],

[4]. However, such an idealistic assumption does not hold in

practical cooperative systems, where the channel gains, MCFOs,

and MTOs need to be jointly estimated. This fact is highlighted in

[7], where joint maximum likelihood (ML) estimation of MCFOs,

MTOs, and channels for DF cooperative systems is investigated.

However, the ML estimator in [7] is very computationally com-

plex. Joint channel estimation and time-frequency synchronization

for uplink orthogonal frequency-division multiple access systems

are proposed in [8], [9], that exploits the cyclic prefix. However,

depending on the number of sub-carriers used, the frequency

acquisition range of the algorithms in [8], [9] is very limited. To

the best of the authors’ knowledge, the problem of joint MCFOs,

MTOs, and channel estimation with CRLB derivation for AF

cooperative systems is not analyzed in any existing literature.
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Fig. 1: The system model for the cooperative network.

In [10], we address estimation of MCFOs, MTOs, and channels

in multi-relay cooperative networks. On the other hand, in this

paper, we focus on AF relaying cooperative networks and present

a new zero-forcing equalization scheme that allows for efficient

equalization of MTOs, MCFOs, and channel gains in AF relaying

cooperative networks. In addition, the performance of the proposed

SAGE estimator for different number of relays, length of training

sequences, and different network setups is investigated.

Notation: Superscripts (·)∗ and (·)T denote the conjugation and

the transpose operators, respectively. Bold face small letters, e.g.,

x, are used for vectors, bold face capital alphabets, e.g., X, are

used for matrix representation. IX is used to denote the idenity

matrix of size X×X , ⊙ stands for Schur (element-wise) product,

| · | is the modulus operator and ‖x‖ represents the L2 norm of a

vector x. E{·} assumes the expected value of the corresponding

sequence. ℜ{·} and ℑ{·} take the real and imaginary parts of a

complex quantity. diag(X) is used to denote the diagonal elements

of the matrix X, mod(a/b) finds the remainder of division of a
by b, and ⌊·⌋ indicates the floor function.

II. SYSTEM MODEL AND TRAINING ALGORITHM

We consider a half-duplex space division multiple access single-

input-single-output (SISO) cooperative system with one source

node, S, K relays, R1, · · · ,RK , and a single destination node,

D (Fig. 1). Quasi-static and frequency flat-fading channels are

considered, which is motivated by prior research in this field in

[2]–[6]. The channel gains from S to Rk, Rk to D, and S-Rk-D

are denoted by hk, fk, and αk, respectively, for k = {1, · · · ,K}.

In Fig. 1, τk and νk are used to denote timing offsets and CFOs,

where superscripts, (·)[sr], (·)[rd] and (·)[sd] denote offsets from S

to Rk, Rk to D, and S to D, respectively. Transmission of signals

from source to relays to destination consists of a training period

(TP) as well as a data transmission period (DTP). Without loss of

generality, it is assumed that during the TP, unit-amplitude phase

shift keying (PSK) training signals (TSs) are transmitted to D.
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A. Relay Processing

The block diagram for the proposed AF transceiver at Rk and

AF receiver at D are depicted in Figs. 2 and 3, respectively. The

received signal at Rk is down converted by oscillator frequency,

ω
[r]
k , and then over sampled by the factor Q. The sampled received

signal at the input of timing estimation block, rk(i) is given by1

rk(i) = hk

L−1
∑

n=0

t[s](n)g
(

iTs − nT − τ
[sr]
k T

)

ej2πiν
[sr]
k

/Q + uk(i),

(1)

where ν
[sr]
k is the CFO, normalized by the symbol duration T ,

between S and Rk, hk denotes the unknown channel gain from S

to Rk that is assumed to be static over a frame but distributed as

CN (0, σ2
h) from frame to frame, τ

[sr]
k is the fractional unknown

timing offset, normalized by T, between S and Rk, Ts is the

sampling time period such that Ts = T/Q, g(t) is the transmitter

pulse shaping function, L is the length of the TS, t[s](n), and uk(i)
is the zero-mean complex baseband additive white Gaussian noise

(AWGN) at Rk with variance σ2
uk

, i.e., uk(i) ∼ CN (0, σ2
uk
). It is

assumed that the noise at all relays have the same variance, i.e.,

σ2
u = σ2

u1
= · · · = σ2

uK
.

In order to ensure synchronous transmission and successful

cooperation for AF networks, a timing detector at the kth relay

estimates the corresponding timing offset, τ̂
[sr]
k , using schemes

available for point-to-point SISO systems as outlined in [11]. The

timing offset estimate τ̂
[sr]
k is used as an input to the complex

analog multiplier to ensure that the kth relay’s unit amplitude

training signal, t̄
[r]
k (t), is multiplied by the received signal rk(t)

at the appropriate time. The training signal used here is given by

t
[r]
k (t) = e−jφk(n) for (n − 1)T < t < nT , where φk(n) is in

between (−π, π) and denotes the phase of the nth symbol of the

kth relay’s training signal, where φk(n) 6= φk̄(n), for k 6= k̄. The

output of the multiplier, sk(t), is given by

sk(t) = t
[r]
k (t)hke

j2πF
[sr]
k

t
L−1
∑

n=0

g
(

t− nT − ǫ
[sr]
k T

)

×t[s](n) + t
[r]
k (t)uk(t), (2)

where ǫ
[sr]
k = τ

[sr]
k − τ̂

[sr]
k is timing estimation error and F

[sr]
k =

ν
[sr]
k /T is the analog frequency offset between S and Rk.

Remark 1: Unlike [3], the proposed processing structure at the

relays in Fig. 2 does not assume perfect timing and frequency

offset estimation and matched-filtering at the relays. Moreover, in

our proposed model, the relays do not perform frequency offset

and channel estimation during the TP.

B. Destination Processing

The received signal at D, y , [y(0), · · · , y(QL− 1)]
T

, is given

by

y = Ωα+Ψβ +w, (3)

where:

• Ω ,

[

(Λ1G1t
[s])⊙t

[r]
1 (τ

[rd]
k ), · · · , (ΛKGKt[s])⊙t

[r]
K (τ

[rd]
k )

]

,

• Λk , diag
(

[ej2πν
[sd]
k

(0)/Q, · · · , ej2πν
[sd]
k

(QL−1)/Q]
)

,

• [Gk]m,ℓ , g
(

mTs − ℓT − τ
[sd]
k T

)

is a QL× L matrix,

1For clarity, we reserve the index n = {0, · · · , L − 1} for T -spaced samples
and index i = {0, · · · , QL− 1} for Ts-spaced samples.
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Fig. 2: Block Diagram for the proposed AF kth Relay Transceiver.
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Fig. 3: Block Diagram for the proposed AF Destination Receiver.

• τ
[sd]
k , τ

[rd]
k + ǫ

[sr]
k ,2 τ

[rd]
k is the timing offset between Rk

and D,

• Ψ ,
[

Λ̄1v1, · · · , Λ̄KvK

]

,

• Λ̄k , diag
(

[ej2πν
[rd]
k

(0)/Q, · · · , ej2πν
[rd]
k

(QL−1)/Q]
)

,

• ν
[rd]
k is the normalized CFO from Rk to D, ν

[sd]
k , ν

[sr]
k +

ν
[rd]
k is the sum of CFOs from S–Rk–D,

• t
[r]
k (τ

[rd]
k ) ,

[

t
[r]
k (τ

[rd]
k T ), · · · , t

[r]
k ((QL− 1)Ts − τ

[rd]
k T )

]T

,

• t[s] ,
[

t[s](0), · · · , t[s](L− 1)
]T

,

• w , [w(0), · · · , w(QL − 1)]T , vk , [vk(0), · · · , vk(QL −
1)]T , w(i) ∼ CN (0, σ2

w) is the AWGN at D, vk(i) ,

uk(i)t
[r]
k

(

iTs − τ
[rd]
k T

)

, and

• α , [α1, · · · , αK ]T , β , [β1, · · · , βK ]T , αk , ζkfkhk,

βk , ζkfk, fk ∼ CN (0, σ2
f ) denotes the complex unknown

channel gain from Rk to D, ζk = 1/
√

σ2
h + σ2

u satisfies the

kth relay’s power constraint.

In (3) uk(i) has been used in place of uk(iTs − τ
[rd]
k T ) since

uk(t) denotes the AWGN and its statistics are not affected by

the change in the sampling point. Note that vk(i) has the same

statistical properties as uk(i) due to the assumption of unit-

amplitude training signals.

At the destination, as shown in Fig 3, joint estimation of

MCFOs, MTOs, and channel gains is performed and on the basis

of those estimates, the received signal is equalized to detect the

transmitted data symbols.

III. CRAMER-RAO LOWER BOUND

In this section, new exact closed-form CRLBs for joint esti-

mation of multiple channel gains, MCFOs, and MTOs for AF-

relaying cooperative networks are derived. Given the signal model

at D in (3), the parameter vector of interest θ, is given by

θ ,

[

ℜ{α}T ,ℑ{α}T ,νT , τT
]T

, (4)

where ν , [ν1, · · · , νK ]T and τ , [τ1, · · · , τK ]T and for

notational simplicity, νk and τk are used to denote ν
[sd]
k and τ

[rd]
k ,

respectively.

2The signal model at destination takes into account the timing offset estimation
error from S-R.
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Based on the proposed training method, Fisher’s informa-

tion matrix (FIM) for the estimation of θ is given in (5) at

the bottom of this page, where σ2
n , σ2

u

∑K
k=1 |βk|

2 + σ2
w,

Γ , [(Λ1R1t
[s]) ⊙ t

[r]
1 (τ

[rd]
k ), · · · , (ΛKRKt[s]) ⊙ t

[r]
K (τ

[rd]
k )],

D , 2π/Q × diag
(

[0, 1, · · · , LQ − 1]
)

, H , diag(α1, · · · , αK),

and Rk , ∂Gk/∂τk (Proof, see [10]).

Let us define F11 and F22 as the upper left and lower right

2K×2K sub matrices of F, respectively, and Z as the upper right

2K × 2K sub matrix of F. Using the partitioned matrix inverse,

the closed-form CRLB for the estimation of MCFOs, MTOs and

multiple channel gains, α, can be written as

CRLB(ν, τ ) =
σ2
n

2
diag

(

Υ
)

, (6)

CRLB(α)=
2

σ2
n

diag
(

BF−1
11 B

H +BF−1
11 ZΥZTF−1

11 B
H
)

, (7)

where B ≡ [IK jIK ] is used to obtain the CRLB of α from

the CRLB of ℜ{α} and ℑ{α} according to [12], Υ , F−1
22 +

F−1
22 Z

T (F11 − ZF−1
22 Z

T )−1ZF−1
22 ,

F−1
11 =

[

ℜ{(ΩHΩ)−1} −ℑ{(ΩHΩ)−1}
ℑ{(ΩHΩ)−1} ℜ{(ΩHΩ)−1},

]

, (8)

and F−1
22 is given in (10) at the top of this page, where Φ11 ,

ℜ{HHΩHD2ΩH}, Φ12 , ℑ{HHΩHDΓH}, Φ21 = ΦH
21, and

Φ22 , ℜ{HHΓHΓH}. The following remark is in order:

Remark 2: Eqs. (5), (6), and (7) demonstrate that the FIM

and the CRLB for the joint estimation of MCFOs, MTOs, and

channel gains are not block diagonal. Thus, there exist coupling

between the estimation errors of MCFOs, MTOs, and channel

gains. This shows the importance of jointly estimating MCFOs,

MTOs, and channel gains in multi-relay cooperative networks.

More importantly, this result indicates that the previously proposed

methods that assume perfect frequency or timing synchronization

while estimating MCFOs and MTOs in [3] and [2], respectively,

cannot be applied to estimate MCFOs, MTOs, and multiple

channel gains jointly in distributed AF cooperative networks.

IV. JOINT PARAMETER ESTIMATION

In this section the LS and SAGE algorithms for joint estimation

of MCFOs, MTOs, and multiple channel gains are derived and

their computational complexity is analyzed.

A. LS Estimator

Based on the training signal model in (3), the LS estimate of

α,ν, and τ can be determined as

α̂ = (ΩHΩ)−1ΩHy. (10)

ν̂, τ̂ = argmax
ν,τ

yHΩ(ΩHΩ)−1ΩHy. (11)

TABLE I: Proposed SAGE Algorithm.

Initialization

Obtain ˆ̄ν
[0]
k , ˆ̄τ

[0]
k , and α̂

[0]
k for k = 1, . . . ,K using alternating

projection, (15) and (16) with coarser step size like 0.01

Iterative updates of the Estimation Parameters

for m = 0, 1, . . .

for k = 1, 2, . . . ,K

x̂
[m]
k = y −

∑K

ℓ=1,ℓ 6=k
α̂
[m]
ℓ

(

Λ̂
[m]
ℓ Ĝ

[m]
ℓ t[s]

)

⊙ t
[r]
ℓ

ν̂
[m+1]
k = ν̂

[m]
k −

∑LQ−1
i=0

(

2πi
Q

)

ℑ
{

p
[m]
k

(i)e
j2πiν̂

[m]
k

/Q
bi

(

τ̂
[m]
k

)
}

∑LQ−1
i=0

(

2πi
Q

)2
ℜ
{

p
[m]
k

(i)e
j2πiν̂

[m]
k

/Q
bi

(

τ̂
[m]
k

)
}

τ̂
[m+1]
k = τ̂

[m]
k −

∑LQ−1
i=0 ℜ

{

p
[m]
k

(i)e
j2πiν̂

[m+1]
k

/Q
b′i

(

τ̂
[m]
k

)
}

∑LQ−1
i=0 ℜ

{

p
[m]
k

(i)e
j2πiν̂

[m+1]
k

/Q
b′′i

(

τ̂
[m]
k

)
}

α̂
[m+1]
k =

∑LQ−1
i=0 x̂

[m]
k

(i)e
−j2πiν̂

[m+1]
k

/Q
(

t
[r]
k

(i)
)

∗
(

bi(τ̂
[m+1]
k

)
)

∗

∑LQ−1
i=0 |bi(τ̂

[m+1]
k

)|2|t
[r]
k

(i)|2

end
ˆ̄ν
[m]
k = ˆ̄ν

[m+1]
k , ˆ̄τ

[m]
k = ˆ̄τ

[m+1]
k , α̂

[m]
k = α̂

[m+1]
k .

end

The maximization in (11) is carried out using alternating pro-

jection (AP) [3], [5] which reduces the multi-dimensional maxi-

mization problem into a series of one-dimensional searches [3],

[5]. Note that in order to reach the CRLB for the estimation of

MCFOs, MTOs, and channel gains (See Fig. 4 in Section V),

the step size for the exhaustive search in (11) needs to be very

small, e.g., 10−5, which significantly increases the computational

complexity of LS estimator. To reduce the computational cost of

this exhaustive search, a SAGE estimator is derived below.

B. SAGE Estimator

The entries in the vector θ in (4) are rearranged into the new

parameter vector λ ,
[

λT
1 , · · · ,λ

T
K

]T
in this section, where

λk , [νk, τk, αk]
T , for k = {1, · · · ,K}. The SAGE algorithm

is an expectation maximization (EM) based iterative algorithm

which updates the parameters sequentially by alternating among

the subsets of parameters that make up the hidden data space3.

Thus, using the SAGE algorithm, the parameter λ is divided into

K groups denoted by λk, for k = {1 · · · ,K} [13]. During the

estimation process, the estimates for each group of parameters are

updated while the estimates for the remaining groups are fixed at

their latest updated values. For each group, a hidden data set is

selected [13]. In this case, the hidden data set denoted by xk for

λk is given by

xk = αk

(

ΛkGkt
[s]
)

⊙ t
[r]
k (τ

[rd]
k ) + n, (12)

where n , Ψβ+w is the overall noise vector in (3). The SAGE

algorithm iteratively alternates between an E-step, calculating the

conditional expectation of the hidden-data space log-likelihood,

3The SAGE algorithm is applied here since in [13] its shown that it converges
more quickly than the EM or expectation conditional maximization algorithms.

F =
2

σ2
n
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(5)

F−1
22 =

[

(Φ11 −Φ12Φ
−1
22 Φ21)

−1 −Φ−1
11 Φ12(Φ22 −Φ21Φ

−1
11 Φ12)

−1

−Φ−1
22 Φ21(Φ11 −Φ12Φ

−1
22 Φ21)

−1 (Φ22 −Φ21Φ
−1
11 Φ12)

−1

]

(10)



4

0 5 10 15 20 25 30

10
−5

10
−4

10
−3

10
−2

10
−1

SNR (dB)

M
S

E
 (

ti
m

in
g
 o

ff
s
e
ts

)

SAGE 2R
LS 2R
CRB 2R
SAGE 4R
LS 4R
CRB 4R

24 26 28 30

10
−5

(a)

0 5 10 15 20 25 30
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

SNR (dB)

M
S

E
 (

fr
e
q
u
e
n
c
y
 o

ff
s
e
ts

)

SAGE 2R
LS 2R
CRB 2R
SAGE 4R
LS 4R
CRB 4R

24 24.5 25 25.5 26
10

−8.6

10
−8.1

(b)

0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

M
S

E
 (

c
h
a
n
n
e
l 
e
s
ti
m

a
ti
o
n
)

SAGE 2R
LS 2R
CRB 2R
SAGE 4R
LS 4R
CRB 4R

24 24.5 25 25.5 26

10
−3.7

10
−3.5

10
−3.3

(c)

Fig. 4: MSE and CRLBs of (a) MTOs, (b) MCFOs and (c) channel coefficients estimation as a function of SNR (dB).

and an M-step, maximizing the expectation with respect to (w.r.t)

unknown parameters. The SAGE estimator is summarized in Ta-

ble I (Derivation, see [10]), where p
[m]
k (i) =

(

x̂
[m]
k (i)

)

∗

α̂
[m]
k t

[r]
k (i),

bi (τk) =
∑Lg

ℓ=−Lg t
[s](ℓ+⌊i/Q⌋) g(mod(i/Q)Ts−ℓT−τkT ), Lg

is the selected pulse shaping filter lag in the TP, b′i(τk) and b′′i (τk)
are the first and second order derivatives of the function bi(τk)

w.r.t. τk and ν̂
[m]
k , τ̂

[m]
k and α̂

[m]
k denote the estimated values of νk,

τk and αk, respectively, at the mth iteration. The iterative process is

terminated when the difference between the log-likelihood function

(LLF) of two iterations is smaller than χ = 0.001.

Note that in [13, Page 4] it is shown that the SAGE algorithm

monotonically increases the LLF at every iteration and converges

to a local maximum. Moreover, if the algorithm is initialized in a

region suitably close to the global maximum, the sequence of

estimates converge monotonically to the global maximum [13,

Page 4]. In our simulation, initial rough estimates, ν̂
[0]
k , τ̂

[0]
k , f̂

[0]
k ,

are obtained using AP via (11) while using a coarse step size, e.g.,

10−2. Simulation results in Section V indicate that the proposed

SAGE estimator converges to the true estimates with this initial-

ization procedure. Compared to the LS estimator this significantly

larger step size significantly reduces the computational complexity

associated with the estimation process as shown next.

C. Complexity of the Proposed Estimators

The computational complexity of the proposed algorithms is

evaluated using CPU execution time [14]. The execution time is

observed at SNR = 20 dB with K = 4 relays, when an Intel

Core 2 Quad 2.66 GHz processor with 4 GB of RAM is used. It

has been observed that execution time for the proposed LS and

SAGE estimators is 270 and 0.291 minutes respectively, which

shows that compared to the LS estimator, the SAGE estimator is

capable of estimating the desired parameters approximately 926
times more quickly.

V. SIMULATION RESULTS

In this section, we present simulation results to evaluate the

performance of our estimators. The propagation loss is modeled

as η = (d/d0)
−m, where d is the distance between transmitter

and receiver, d0 is the reference distance, and m is the path loss

exponent [11]. The following simulations are based on σ2
h = 1,

d0 = 1km, and m = 2.7. The timing and carrier frequency offsets

at D, τ [rd] and ν [sd], respectively are assumed to be uniformly

distributed over the range (−0.5, 0.5). Based on the results in

[3], [12], the timing offset estimation errors from S− R, ǫ
[sr]
k , is

assumed to follow a Gaussian distribution, i.e., ǫ
[sr]
k ∼ N (0, σ2

τ ),
where σ2

τ is set to the lower bound on the variance of timing offset

estimation error in point-to-point systems [11, p. 328]. d[sr] and

d[rd] are used to denote the S-R and R-D distances, respectively.

A. Estimation Performance

Specific channels are used to evaluate the MSE perfor-

mance of the proposed estimators, i.e., h = [.279 −
.9603j, .8837+.4681j,−.343+.732i,−.734−.451i, 434−.651i]T

and f = [.7820+ .6233j, .9474− .3203j,−.2413+ .724i, .5141−
.893i,−.7141− .393i]T similar to [2], [4], [6]. First K elements

of h and f vectors are used for K-relay network. Unless otherwise

specified, Q = 2, Lg = 10, d[sr] = d[rd] = 1 km, and quadrature

phase-shift keying (QPSK) modulation is used. Without loss of

generality, MSE of the estimation parameters for the first relay

is presented. Figs. 4(a), (b), and (c) show the CRLB and MSE

for estimation of MTOs, MCFOs, and channel gains, respectively,

with networks of 2 and 4 relays. It is shown that the MSEs of

the proposed LS estimators are close to their CRLBs at mid-

to-high SNRs. In comparison, the proposed SAGE estimator is

close to the CRLB at mid-SNR values but exhibits some small

performance degradation w.r.t. to the CRLB when estimating

MCFOs, MTOs, and channel gains at high SNR due to the Taylor

series approximations, which are used to linearize the LLF under

consideration. In addition, Fig. 4(a) indicates that while estimating

MTOs at high SNR, the MSEs of the proposed SAGE estimator

exhibits an error floor. This error floor is due to the forward

difference approximation used for evaluating the first and second

order derivative of bi(τk). However, as shown in Section IV-B,

compared to the LS scheme, the SAGE estimator significantly

reduces the computational complexity associated with estimating

impairments in cooperative networks. Moreover, at low SNR, the

proposed LS and SAGE estimators demonstrate poor performance

due to the considerable timing offset estimation error from source

to relays and the noise at the relays which is amplified and

forwarded to the destination.

Fig. 5 and Fig. 6 presents the impact on the CRLB and MSE of

SAGE algorithm for MCFOs estimation w.r.t. varying numbers of

relays and TS lengths, respectively. Fig. 5 shows that estimation

performance is close to the CRLB for different numbers of relays.

It is worth mentioning that estimation performance has very minor

degradation by increasing the number of relays. Fig. 6 shows that

estimation performance improves by increasing the TS length.

Further, it shows that MSE of SAGE estimator is away from the

CRLB for L = 16, but gets close to the CRLB for L ≥ 32 at

SNR ≥ 20 dB.
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Fig. 5: MSE and CRLB of MCFOs estimation for different number

of relays with L = 64.
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Fig. 6: MSE and CRLB of MCFOs estimation for different TS

length with K = 2.

B. Convergence of SAGE Estimator

Table II shows the average number of iterations required by

the SAGE algorithm to converge for different values of signal-

to-noise-ratio (SNR). It can be observed from Table II that the

proposed estimator converges after few iterations and is numeri-

cally stable.

TABLE IITABLE II
AVERAGE NUMBER OF ITERATIONS REQUIRED FOR THE CONVERGENCE OF

SAGE ALGORITHM.

Relays
SNR (dB)

0 5 10 15 20 25 30

K = 2 10.5 11.4 12.8 13.9 15.0 16.1 17.2

K = 4 12.4 14.1 15.4 16.7 17.8 19.0 20.4

C. Cooperative Performance

Fig. 7 shows the BER performance of a 2-relay cooperative

network with BPSK and QPSK modulation schemes. The channel

gains from source to relays and from relays to destination are

modeled as independent and identically distributed (i.i.d) complex

Gaussian random variables with CN (0, 1). We use zero-forcing

(ZF) equalization, fixed gain relaying, synchronization overhead

of 15%, and Q = 4 for the DTP. The results show that BER

performance of SAGE estimator is close to the idealistic case of

perfect impairment estimation i.e., perfect estimation (PE). Finally,

we note that with the help of the proposed SAGE estimator, the

BER of the overall cooperative network is below 10−3 for SNRs

greater than 17dB and 23dB for BPSK and QPSK modulations,

respectively.
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Fig. 7: BER performance of the cooperative system with 2 relays.

VI. CONCLUSIONS

In this paper a new transceiver design for achieving timing

and frequency synchronization in AF cooperative networks is

proposed. New closed-form CRLB expressions for the multiple

parameter estimation problem are derived. Two estimation meth-

ods using LS and SAGE algorithms, are proposed for jointly

estimating MCFOs, MTOs, and channel gains at the destination.

In addition, it is established that at SNR of 20 dB for a 4-

relay cooperative network, the execution time SAGE algorithm

is approximately three orders of magnitude lower than an LS

estimator. Simulation results show that the proposed estimators

are close to the CRLB at mid-to-high SNRs for various number

of relays and TS length ≥ 32.
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